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T
his article is the second in a series in which I
describe several of the more common statistical
errors in the biomedical literature. The first
article in the series focused on 10 errors in

descriptive statistics and in interpreting probability, or P
values.1 Here, I provide an overview of multivariate
analyses (regression analysis and analysis of variance, or
ANOVA) and describe nine errors in interpreting
differences between groups.

An Overview of Multivariate Analyses

The most common forms of multivariate analyses in
medicine are regression analysis and ANOVA. The two
methods are similar. Both are used in studies involving
two or more explanatory variables. In general, ANOVA is
used to assess categorical explanatory variables, whereas
regression analysis is used to assess continuous
explanatory variables. When a study includes both
categorical and continuous and explanatory variables, the
analysis may be called either multiple regression analysis
or analysis of covariance (ANCOVA). The results of
multivariate procedures are referred to as models
(equations), because they seek to describe the
mathematical relationships among the variables so that
one value can be predicted from the others.

The most common types of multiple regression analysis
are the following:

• Linear regression, in which two or more explanatory
variables are used to predict the value of a contin-
uous response variable

• Logistic regression, in which two or more explan-
atory variables are used to predict the value of a
binomial response variable (alive or dead, healed or
not healed)

• Cox proportional hazards regression, in which two
or more explanatory variables are used to predict the
time to an event (such as the time from surgery to
death)

The most common ANOVA procedures are one-way
ANOVA, two-way ANOVA, multi-way ANOVA,
ANCOVA, and repeated-measures ANOVA.2

Unfortunately, these procedures take more space to
explain.

• One-way ANOVA assesses the effect of a single
categorical explanatory variable (sometimes called a
factor) on a single continuous response variable. The
factor (category) also has three or more alternatives
(or levels or values; for example, the category of
blood type has four alternatives: A, B, AB, or O).
When there are only two alternatives (two groups),
this analysis reduces to the Student t test.

Example: Women with osteoporosis have been
randomly assigned to one of three groups: a standard
treatment, a new treatment, or a placebo. The
response variable is the change in bone mineral
density, a continuous variable. The explanatory
variable is the form of treatment, which distinguishes
each group. The results can be analyzed with one-way
ANOVA.

• Two-way ANOVA assesses the effect of two categorical
explanatory variables (again, sometimes called
factors) on a single continuous response variable.

Example: Suppose age was included in the previous
example as a second explanatory variable. Age is
coded as one of four ordinal categories: 30 to 40 years
old, 41 to 50 years old, 51 to 60 years old, and 61
years old or more. With two categorical variables,
treatment (or group) and age, the data can be
analyzed with two-way ANOVA.

• Multi-way ANOVA assesses the effect of three or more
categorical explanatory variables (still called factors)
on a single continuous response variable.

Example: To the previous example, the addition of
more categorical explanatory variables, such as diet
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(vegetarian or nonvegetarian) and alcohol consump-
tion (less than 2 ounces of alcohol per day, 2 to 5
ounces per day, or 6 ounces or more per day), would
move the analysis from two-way to four-way ANOVA,
or simply, multi-way ANOVA.

• ANCOVA assesses the effect of one or more
categorical explanatory variables while controlling for
the effects of some other (possibly continuous)
explanatory variables (now called covariates) on a
single continuous response variable.

Example: To the previous example, we now may wish
to control for the severity of disease. Women with
more severe osteoporosis may have different bone
mineral densities than women with less severe
disease. If we are to study the relationship between
treatment and age on bone mineral density, we must
control for disease severity. We thus add another
(categorical) explanatory variable, disease severity
(mild, moderate, and severe). The analysis is now
called analysis of covariance (ANCOVA).

• Repeated-measures ANOVA is used to assess several
paired, or repeated, measurements of the same
subjects under different conditions (such as blood
pressure measurements taken while the patient is
supine, sitting, and standing) or at different points
over time (such as muscle strength measured 1, 5, 10,
and 20 days after surgery).

Example: Again, building on the previous example,
suppose we have measurements of bone mineral
density for all patients at the onset of symptoms and
at 6 and 12 months after the onset of symptoms.
Time can now be added to the ANOVA model as an
explanatory variable. Here, time is a repeated
measure; although each woman belongs to a single
treatment group and to a single age category, each
has bone density measurements at three points in
time (0, 6, and 12 months).

Error #11. Not Confirming That the Data Met
the Assumptions of ANOVA

ANOVA assumes that the response variable is
approximately normally distributed within each level of
the explanatory variable and that the variability of these
distributions is approximately the same. Because most
biologic data are not normally distributed,3-9 the data
may need to be mathematically transformed into
distributions that are more normally distributed.
Alternatively, a nonparametric form of ANOVA can be
used. For example, skewed data should probably be
analyzed with the Wilcoxon rank-sum test, rather than
with one-way ANOVA, and by the Kruskal-Wallis test,
rather than with multi-way ANOVA. (The assumptions of

regression analyses are mentioned in Error #9 in the first
article of this series.) 

Error #12. Not Identifying the Procedure Used
to Adjust for Multiple Comparisons in ANOVA

ANOVA is a group comparison that determines whether
a statistically significant difference occurs somewhere
among the groups studied. If a significant difference
occurs, ANOVA is followed by a multiple comparison
procedure that compares combinations of groups to
determine which groups differ statistically. Common
multiple comparison procedures include Tukey’s
procedure, Student-Neuman-Keuls procedure, Scheffe’s
method, and Fisher’s least-significant method; there are
many others.

Error #13. Not Testing the Explanatory
Variables for Interaction or Colinearity 

Two explanatory variables are said to interact if the effect
of one of the response variables depends on the level of
the other. For example, alcohol and barbiturates can
interact to cause death, even if the amounts of each—by
themselves—are not lethal. Interaction implies that the
factors should be considered together, not separately.
Thus, an analysis of the causes of death from drug
overdose would have one factor for blood alcohol level,
one for blood barbiturate level, and an interaction term
that represents the fact that the effect of alcohol on death
depends in part on barbiturate level.

Two variables are said to be colinear if they are highly
associated and therefore provide the same information in
the model. Systolic and diastolic blood pressure, for
example, may contribute such similar information to the
model that only one need be used. Testing for interaction
and colinearity is usually necessary only in large studies
with several explanatory variables.

Error #14. Not Indicating the Goodness-of-Fit
of the Model to the Data 

Goodness-of-fit indicates how well the model expresses
the relationships observed in the data. Examining the
residuals (the differences between the observed values
and those estimated by the model) helps to determine the
fit of the model. The results of the analysis of residuals
need not be reported; a statement that the residuals were
examined and that the model did (or did not)
appropriately fit the data will suffice.

In multiple regression analysis (not ANOVA), the value of
R2 should be reported. This value indicates how much of
the variation in the response variable is explained by the
factors included in the model. Thus, the higher, the
better.
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Error #15. Not Reporting Whether and How the
Model Was Validated

Multivariate models can be validated or tested against a
similar set of data to show that they explain what they
seek to explain. One method of validation, used with
large samples, is to develop the model on, say, 70% of the
data and to compare it with another model based on the
remaining 30%. Another method involves removing the
data from one subject at a time and recalculating the
model. The coefficients and the predictive validity of all
the models (there may be hundreds) can then be
compared. Such methods are called jackknife procedures.
A third method involves developing a new model on a
new set of comparable data to determine whether the
results are similar.

Errors in Interpreting Differences 
Between Groups 

The majority of biomedical research studies are
interested in differences, either in one or more groups
over time or between two or more groups at the same
time. Differences are of interest, for example, when they
indicate that one intervention might be more effective
than another. Differences can be presented in several
forms, however, some of which can be misleading. Here, I
describe some of the more common forms, how they can
be misinterpreted, and what additional information is
needed to prevent these misinterpretations.

Error #16. Not Reporting Confidence Intervals
with Estimates

When interpreting any difference, whether it is
statistically significant or not, the direction and magnitude
of the difference should be evaluated for its clinical
importance. However, because a study is based on a
sample of the population of interest, rather than on a
census of the population, its results are actually estimates
of the differences expected if the study were to be
repeated on the entire population. Thus, another factor
that should be considered when evaluating differences is
the precision of the estimate.

In clinical research, the most common measure of
precision for an estimate is the 95% confidence interval.
In the following example,2 evaluating only the estimated
size of the difference can be misleading. For this reason,
journals now recommend reporting the 95% confidence
interval for the difference between groups (that is, for the
estimate), instead of, or in addition to, the P value for the
difference.10

“The mean diastolic blood pressure of the treatment group
dropped from 110 to 92 mm Hg (P = 0.02).” This

presentation is the most typical. The pretest and posttest
values are given, but not the difference. The mean drop—
the 18-mm Hg difference—is statistically significant, but
it is also an estimate of the drug’s effectiveness, and
without a 95% confidence interval, the precision (and
therefore the usefulness) of the estimate cannot be
determined.

“The drug lowered diastolic blood pressure by a mean of 18
mm Hg, from 110 to 92 mm Hg (95% CI = 2 to 34 mm
Hg; P = 0.02).” In essence, the confidence interval
indicates that if the drug were to be tested on 100
samples similar to the one reported, the average drop in
blood pressure would fall between 2 and 34 mm Hg in 95
of the 100 samples. (See Letter to the Editor and response
on page 135.) A drop of only 2 mm Hg is not clinically
important, but a drop of 34 mm Hg is. So, although the
mean drop in blood pressure in this particular study was
statistically significant, the expected difference in blood
pressures may not always be clinically important; that is,
these study results are actually inconclusive. For
conclusive results, more patients probably need to be
studied to narrow the confidence interval until all or
none of its values are clinically important.

Error #17. Reporting Only Relative Differences
and Not Absolute Ones

The absolute difference between groups is simply the
mathematical difference between their values, whereas the
relative difference is the absolute difference expressed as a
percentage. By themselves, relative differences can mislead
because they can make differences appear to be larger or
smaller than they really are.11 For example, a 50%
survival rate could mean that two of four patients
survived or that 2,000 of 4,000 survived. The absolute
difference in survival is two in the smaller study and
2,000 in the larger one. Thus, although both studies show
the same relative difference, the absolute difference of the
first study is probably too small to justify meaningful
conclusions.

In a scientific article, the numerators and denominators
should be apparent for all percentages so that the
absolute differences can be determined.2 This need is
especially important when the numbers are less than 100,
because the percentages are larger than the actual
numbers they represent. “A third of the rats lived, 33%
died, and the last one got away.” Here, 33% is one of three
rats. In the following, more serious example,12 readers
given the absolute difference usually judge the drug to be
far less effective than do readers given the relative
difference. “In the Helsinki study of hypercholesterolemic
men, after 5 years, 84 of 2030 patients on placebo (4.1%)
had heart attacks, whereas only 56 of 2051 men treated
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with gemfibrozil (2.7%) had heart attacks (P < 0.02)”
Here, the absolute difference (and therefore, the
“absolute risk reduction” in heart attack) was 1.4%; that
is, the difference between the frequency of heart attacks
in the two groups was 1.4% (4.1% - 2.7% = 1.4%).
However, the relative difference (and therefore, the
“relative risk reduction” in heart attack) was 34%; that is,
1.4 is 34% of the 4.1% of men in the control group who
had heart attacks (1.4%/4.1% = 34%).

Error #18. Not Differentiating Between Unit of
Observation and the Number of Patients
Improved

The unit of observation or the unit of analysis is what is
being studied. In clinical research, the unit of observation
is usually the patient. However, sometimes the unit is
something other than the patient. The problem comes
when, say, differences are reported for the unit of
observation but not for the number of patients in whom
differences occurred. For example, if a drug markedly
improves mean glomerular filtration rate in patients with
renal disease, it may also be helpful to know how many
patients actually improved.

This issue can be illustrated with a simple example
(Figure 1), in which the results can be reported as a mean
decrease from time 1 to time 2 or as an increase in two of
three (66%!) patients. Both results are technically correct,
but reporting only one can be misleading because the
mean change is the result of an unusual response in a
single patient.

Error #19. Confusing Post-hoc Analyses with
Planned Analyses

Post-hoc analyses are analyses performed after
investigators have reviewed the study data; that is, post-
hoc analyses are exploratory analyses suggested by the
data and are not planned in advance of data collection.
Exploratory analyses are necessary to make the most of
the data collection effort. The problem comes when these
analyses are presented as planned, primary analyses,
rather than as exploratory analyses. Differences detected
by post-hoc analyses should be evaluated more critically
than differences detected by the planned analyses.

The number of exploratory analyses can sometimes be
large. As mentioned in Error #9,1 generating multiple P
values greatly increases the chance of finding a significant
P value somewhere in the data. Exploratory analyses are
thus sometimes called data dredging or “fishing
expeditions” when the real search is for any significant P
value rather than meaningful differences in the data.
“Hypothesis-generating studies (sometimes referred to as

‘fishing expeditions’) should be identified as such. If the
fishing expedition catches a boot, the fishermen should
throw it back, not claim that they were fishing for
boots.”13
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