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“Critical reviewers of the biomedical literature have
consistently found that about half the articles that used
statistical methods did so incorrectly.” 1

S
tatistical probability was first discussed in the
medical literature in the 1930s.2 Since then,
researchers in several fields of medicine have
found high rates of statistical errors in large

numbers of scientific articles, even in the best journals.3-6

The problem of poor statistical reporting is, in fact, long-
standing, widespread, potentially serious, and almost
unknown, despite the fact that most errors concern basic
statistical concepts and can be easily avoided by following
a few guidelines.7

The problem of poor statistical reporting has received
more attention with the rise of the evidence-based
medicine movement. Evidence-based medicine depends
on the quality of published research; that is, evidence-
based medicine is literature-based medicine. As a result,
several groups have proposed reporting guidelines for
different types of trials,8-10 and a comprehensive set of
guidelines for reporting statistics in medicine has been
compiled from an extensive review of the literature.11

In a series of articles, I will describe several of the more
common statistical errors found in the biomedical
literature, errors that can be identified even by those who
know little about statistics. These guidelines are but the
tip of the iceberg; readers who want to know more about
the iceberg should consult more detailed texts,11 as well
as other references cited in this series.

The field of statistics can be divided into two broad areas:
descriptive statistics, which is concerned with how to
describe samples of data collected in a research study, and
inferential statistics, which is concerned with how to
estimate (or infer) from the sample the characteristics of

the population from which the sample was selected. In
this article, I describe errors made in defining variables,
in summarizing the data collected about these variables,
and in interpreting probability (P) values.

Errors in Descriptive Statistics

Error #1: Not Defining Each Variable in
Measurable Terms

Science is measurement. Researchers need to tell us what
they measured—the variables—and how they measured
them, by providing the operational definition of each
variable. For example, one operational (measurable)
definition of hypertension is a systolic blood pressure of
140 mm Hg or higher, and an operational definition of
obesity is a body mass index above 27.3 for women and
above 27.8 for men.

Variables relating to concepts or behaviors may be more
difficult to measure. Depression defined as a score of
more than 50 on the Zung Depression Inventory is
operationally defined, but how well the Inventory actually
measures depression can be debated. In one major U.S.
survey, a “current smoker” is anyone who smoked one
cigarette in the 30 days before the survey. Although this
definition is not an obvious one, it is nevertheless an
“operational” one, and we at least know who “current
smokers” are in the survey, even if we disagree with the
definition.

Error #2: Not Providing the Level of
Measurement of Each Variable

Level of measurement refers to how much information is
collected about the variable. For practical purposes, there
are three levels of measurement: nominal, ordinal, and
continuous. At the lowest level are nominal data, which
consist of two or more nominal, or named, categories
that have no inherent order. Blood type defined as type
A, B, AB, or O is measured at the nominal level of
measurement.

Ordinal data consist of categories that do have an
inherent order and can be sensibly ranked. A person may
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be described as short, medium, or tall. We may not know
the exact height of the patients studied, but we do know
that a person in the tall category is taller than one in the
medium category, who, in turn, is taller than one in the
short category.

Continuous data consist of values along a continuous
measurement scale, such as height measured in centi-
meters or as blood pressure measured in millimeters of
mercury. Continuous data are the highest level of
measurement because they tell how far each point value
is from any other value on the same scale.

Researchers need to specify the level of measurement for
each variable. For example, they may wish to characterize
a patient’s blood pressure as a nominal variable (either
elevated or not elevated), as an ordinal variable (hypoten-
sive, normotensive, or hypertensive), or as a continuous
variable (the systolic pressure in millimeters of mercury).
The levels of measurement of response and explanatory
variables are important because they determine the type
of statistical test that can be used to analyze relationships.
Different combinations of levels of measurement require
different statistical tests.

Error #3: Dividing Continuous Data into
Ordinal Categories Without Explaining Why or
How the Categories Were Created

To simplify statistical analyses, continuous data, such as
height measured in centimeters, are often separated into
two or more ordinal categories, such as short, medium,
and tall. Reducing the level of measurement in this way
also reduces the precision of the measurements, however,
as well as reducing the variability in the data. Authors
should explain why they chose to lose this precision. In
addition, they should explain how the boundaries of the
ordinal categories were determined, to avoid the
appearance of bias. In some cases, the boundaries (or cut
points) that define the categories can be chosen to favor
certain results.

Error #4: Using the Mean and Standard
Deviation to Describe Continuous Data That
Are Not Normally Distributed

Unlike nominal and ordinal data, which are easily
summarized as the number or percent of observations in
each category, continuous data can be graphed to form
distributions. Distributions are usually described with a
value summarizing the bulk of the data—the mean,
median, or mode—and a range of values that represent
the variation of the data around the summary value—the
range, the interpercentile range, or the standard deviation
(SD).

Normal distributions are appropriately described with
any of the above descriptive statistics, although the mean
and the SD are used most commonly. In fact, the mean
and the SD should be used only to describe approxi-
mately normal distributions. By definition, about 67% of
the values of a normal distribution are within ±1 SD of
the mean, and about 95% are within ± 2 SDs. Non-
normal or skewed distributions, however, are not
appropriately described with the mean and the SD. The
median value (the value that divides observations into an
upper and a lower half) and the interquartile range (the
range of values that include the middle 50% of the
observations) are more appropriate for describing non-
normally distributed data.

Most biologic data are not normally distributed, so the
median and interquartile range should be more common
than the mean and the SD. A useful rule of thumb is that
if the SD is greater than half of the mean (and negative
values are not possible), the data are not normally
distributed.

Error #5: Using the Standard Error of the Mean
(SEM) As a Descriptive Statistic

Unlike the mean and the SD, which are descriptive
statistics for a sample of (normally distributed) data, the
standard error of the mean (SEM) is a measure of
precision for an estimated characteristic of a population.
(One SEM on either side of the estimate is essentially a
67% confidence interval [see later]. However, the SEM is
often reported instead of the SD. The SEM is always
smaller than the SD, and so its use makes measurements
look more precise than they are. In addition, the
preferred measure of precision in the life sciences is the
95% confidence interval. Thus, measurements (when
normally distributed) should be described with the mean
and SD, not SEM, and an estimate should be
accompanied by the 95% confidence interval, not the
SEM.

Errors in Interpreting Probability (P) Values

“We think of tests of significance more as methods of
reporting than for making decisions because much more
must go into making medical policy than the results of a
significance test.”12

Probability (P) values can be thought of as the amount of
evidence in favor of chance as the explanation for the
difference between groups. When the probability is small,
usually less than five times in 100, chance is rejected as
the cause, and the difference is attributed to the
intervention under study; that is, P values indicate
mathematical probability, not biologic importance.
Probability values are compared to the alpha level that
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defines the threshold of statistical significance. Alpha is
often set at 0.05. A P value below alpha is “statistically
significant”; a P value above alpha is “not significant at
the 0.05 level.” This all-or-none interpretation of a P
value and the fact that any alpha level is arbitrary are
other causes of misinterpretation.

A P value can help to decide whether, say, two groups are
significantly different. The lack of statistical significance,
however, does not necessarily mean that the groups are
similar. Concluding that groups are equivalent because
they do not differ significantly is another common
misinterpretation.

Error #6: Reporting Only P Values for Results

The problems described have led journals to recommend
reporting the 95% confidence interval for the difference
between groups (that is, for the “estimate”) instead of, or
in addition to, the P value for the difference.13 The
following examples show the usefulness of confidence
intervals.11

• The effect of the drug on lowering diastolic blood
pressure was statistically significant (P<0.05). Here, the
P value could be 0.049; statistically significant (at the
0.05 level) but so close to 0.05 that it should be
interpreted similarly to a P value of, say, 0.051, which
is not statistically significant. In addition, we do not
know by how much the drug lowered diastolic
pressure; that is, we cannot judge the clinical
importance of the reduction.

• The mean diastolic blood pressure of the treatment
group dropped from 110 to 92 mm Hg (P=0.02). This
presentation is the most typical. The values before and
after the test are given, but not the difference. The
mean drop—the 18-mm Hg difference—is statistically
significant, but it is also an estimate of the drug’s
effectiveness, and without a 95% confidence interval,
the precision (and therefore the usefulness) of the
estimate cannot be determined.

• The drug lowered diastolic blood pressure by a mean of
18 mm Hg, from 110 to 92 mm Hg (95% CI = 2 to 34
mm Hg; P=0.02). The confidence interval indicates
that if the drug were to be tested on 100 samples
similar to the one reported, the average drop in blood
pressure would range between 2 and 34 mm Hg in 95
of the 100 samples. A drop of only 2 mm Hg is not
clinically important, but a drop of 34 mm Hg is. So,
although the mean drop in blood pressure in this
particular study was statistically significant, the
expected difference in blood pressures may not always
be clinically important; that is, the study results are
actually inconclusive. For conclusive results, more
patients probably need to be studied to narrow the

confidence interval until all or none of the values are
clinically important.

Error #7: Not Confirming That the Assumptions
of Statistical Tests Were Met 

Statistical tests may not give accurate results if their
assumptions are violated.14 For this reason, both the
name of the test and a statement that its assumptions
were met by the data should be included when reporting
statistical analyses. The most common errors are

• Using parametric tests (which require data to be
normally distributed) when the data are skewed. In
particular, when comparing two groups, the Student t
test is often used when the Wilcoxon rank sum test (or
another nonparametric test that does not assume
normally distributed data) is more appropriate.

• Using tests for independent samples on paired
samples, which require tests for paired data. Again, the
Student t test is often used when a paired t test is
required.

• Using linear regression analysis without establishing
that the relationship between variables is, in fact,
linear. (The assumption of linearity may be tested by
what is called an analysis of “residuals.”11) 

Error #8: Interpreting Nonstatistically
Significant Results As “Negative” When They
Are, in Fact, Inconclusive 

A researcher who finds no statistically significant
difference between experimental groups must decide
whether the lack of difference means that the groups
were, in fact, similar (the intervention made no
difference), or that too few data were collected to detect a
meaningful difference. This decision is usually made with
a power calculation, which determines how many
subjects must be studied to have a given chance of
detecting a given difference, if such a difference is there to
be detected.

Unfortunately, many studies reporting nonstatistically
significant findings are underpowered and, therefore, do
not provide conclusive answers.15 The researchers found
no difference, but neither can they rule out the existence
of a difference. Absence of proof is not proof of absence.

In adequately powered studies, statistically insignificant
results are truly negative: the groups being compared are,
in fact, similar because no difference was found, but a
difference could have been found had it existed in the
data. Adequate power is especially important in
equivalence trials (or noninferiority trials), which are
conducted to establish that one drug is as good as
another.
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Error #9: Not Reporting Whether or How
Adjustments Were Made for Multiple
Hypothesis Tests

Many studies report several P values, which increases the
risk of making a type I error: concluding that the
difference found is the result of an intervention when
chance is a more likely explanation. For example, to
compare each of six groups to all the others, 15 pair-wise
statistical tests—15 P values—are needed. Without
adjusting for these multiple tests, the chance of making a
type I error rises from 5 times in 100 (the typical alpha
level of 0.05) to 55 times in 100 (an alpha of 0.55).

The multiple testing problem may be encountered when

• Establishing group equivalence by testing each of
several baseline characteristics for differences between
groups (hoping to find none)

• Performing multiple pair-wise comparisons, which
occurs when three or more groups of data are
compared two at a time in separate analyses

• Testing multiple endpoints that are influenced by the
same set of explanatory variables

• Performing secondary analyses of relationships
observed during the study but not identified in the
original study design

• Performing subgroup analyses not planned in the
original study

• Performing interim analyses of accumulating data
(one or more endpoints measured at several different
times) 

• Comparing groups at multiple time points with a
series of individual group comparisons (repeated-
measures procedures)

Adjusting for multiple comparisons is sometimes
optional. However, readers need to know whether or not
adjustments were made and, if so, what adjustments were
involved.16 The Bonferroni correction is a common
adjustment, for example.

Multiple testing is often needed to explore new
relationships among data; however, exploratory analyses
should be reported as exploratory. Data dredging—
performing undisclosed analyses to compute many P
values to find something that is statistically significant
(and, therefore, worth reporting)—is poor science.

Error #10: Confusing Statistical Significance
with Biologic Importance

As described here, many researchers interpret a statisti-
cally significant P value as indicating a biologically
important result.17 In fact, P values have no biologic
interpretation. The nature and size of the difference must
be judged to determine biologic importance. Perhaps the
best way to remember this most common of statistical
errors, as well as to close this article, is with a quote from
statistician John Yancy: “It has been said that a fellow
with one leg frozen in ice and the other leg in boiling
water is comfortable—on average.”18
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