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Observational study designs, as explained in our 
previous 2 reviews, are inherently vulnerable to 
systematic errors from selection and measurement 

biases and confounding; retrospective studies may addi-
tionally be subject to reverse causation when the timing 
of exposure and outcome cannot be precisely determined. 
Fortunately, 2 study design strategies, randomization and 
blinding, preclude or mitigate these major sources of error.

Randomized clinical trials (RCTs) are cohort studies—
necessarily prospective—in which treatments are allocated 
randomly to the subjects who agree to participate. In the 
most rigorous randomized trials, called blinded or masked, 
knowledge of which treatment each patient receives is con-
cealed from the patients and, when possible, from inves-
tigators who evaluate their progress. Blinded RCTs are 
particularly robust because randomization essentially elim-
inates the threats of reverse causation and selection bias to 
study validity, and, considerably mitigates the threat of con-
founding. Well-executed blinding/masking simultaneously 
mitigates measurement bias and placebo effects by equaliz-
ing their impacts across treatments.1 We now discuss these 
benefits in more detail.

RANDOMIZATION
In reviewing patient records, we would not expect 2 treat-
ments for a medical condition to be randomly distributed 
among patients because care decisions are influenced by 
numerous factors, including physician and patient prefer-
ence. Patients given different treatments may therefore differ 
systematically and substantially in their risks of outcomes.

Randomization eliminates selection bias in treatment 
comparisons because, by definition, randomized assign-
ments are indifferent to patient characteristics of any sort. 
For example, investigators reviewing records might find 

that aggressively treated septic critical care patients do bet-
ter than those treated conservatively. Improved outcomes 
might occur because aggressive therapy was more effective. 
But it might equally well be that patients who appeared 
stronger were selected for more aggressive therapy because 
they were thought better able to tolerate it and then did bet-
ter because they were indeed stronger. Looking back, it is 
hard to distinguish selection bias from true treatment effect.

The threat of confounding, which can be latent in a 
population or result from selection or measurement bias, 
refers to misattribution error because of a third-factor link-
ing treatment and outcome. For example, anesthesiologists 
may prefer to use neuraxial anesthesia in older patients 
under the impression that it is safer. Let us say, however, 
that younger patients in a study cohort actually do better. 
But did they do better because of they were given general 
anesthesia (a causal effect of treatment) or simply because 
they were younger (confounding by age, the third vari-
able)? Looking back in time, as in a retrospective analysis 
of existing data, in complex medical situations, it is difficult 
to determine the extent to which even known mechanisms 
contribute causally to outcome differences. And it is essen-
tially impossible to evaluate the potential contributions of 
unknown mechanisms.

Confounding can only occur when a third factor, the con-
founder, differs notably between treatment groups in the 
study sample. Randomization largely prevents confound-
ing because, in a sufficiently large study, patients assigned 
to each treatment group will most likely be very similar with 
respect to non–treatment-related factors that might influence 
the outcome. The tendency of randomization to equalize 
allocations across treatment groups improves as sample size 
increases and applies to both known and unknown factors, 
thus making randomization an exceptionally powerful tool.

Randomized groups in a sufficiently large trial will thus 
differ substantively only in treatment. The consequence is 
that, unless there is measurement bias, differences in out-
come can be causally and specifically attributed to the treat-
ment itself—which is what we really want to know.

Trials need to be larger than one might expect to pro-
vide a reasonable expectation that routine baseline factors 
are comparably distributed in each treatment group (i.e., 
n > 100 per group). For factors that are uncommon, many 
more patients are required. For example, consider a feasibil-
ity trial testing tight-versus-routine perioperative glucose 
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control with 25 patients per group. It is unlikely that aver-
age age or weight will differ greatly between the 2 groups. 
But it would not be too surprising if, by bad luck, 1 group 
had 14 diabetic patients and the other had just 7. Such a 
large disparity will occur about 1 in 12 trials of this size, 
just by chance. But diabetes mellitus obviously has substan-
tial potential to influence the investigators’ ability to tightly 
control glucose concentration. Baseline inhomogeneity, that 
is, the disparate numbers of patients with diabetes mellitus, 
would then complicate interpretation of the results of an 
otherwise excellent trial.

One approach to avoiding baseline heterogeneity is 
increasing the sample size. Larger sample size lowers the 
risk of any given level of heterogeneity across all potentially 
important factors, including unknown confounders. But 
when there are a limited number of obviously important 
uncommon factors, an alternative is to stratify randomiza-
tion (i.e., randomize separately in groups distinguished by 
the values of these factors), using one of several possible 
devices that restrict the results so that each factor is distrib-
uted roughly evenly across treatment groups. This process 
assures that even uncommon characteristics, if included in 
the stratification, will be roughly comparably distributed 
across treatment groups.

With electronic randomization systems, such as those 
accessed in real time via the Web, it is possible to include 
various levels of stratification without difficulty. In multi-
center studies, permuted-block randomization is virtually 
always used because site-related variations are assumed to be 
a substantial potential confounder and a given site may not 
enroll enough patients to assure baseline homogeneity. In this 
process, random treatments are assigned in small sequential 
blocks of each site’s patients, so that different sites’ patients are 
comparably distributed across treatment groups at the end of 
each block. Block sizes are concealed from clinicians enrolling 
patients, and often changed, so that enrolling clinicians and 
other investigators are masked to the allocation process and 
cannot know the next patient’s treatment assignment.

Although theoretically straightforward, randomization 
can be tricky in practice. For example, patients may agree 
to participate in a randomized trial but then drop out if 
they are not assigned to the novel treatment they wanted. 
Similarly, consented patients may remove themselves from 
a study based on perceived lack of benefit or complications. 
To the extent that patients drop out of studies nonrandomly, 
there remains potential for selection bias.

BLINDING
Clinical measurements, no matter how carefully taken, are 
rarely precisely accurate. Preservation is imperfect, bio-
samples degrade, batches of reagents and biologics vary, 
human operators processing samples are inconsistent, and 
radiologists and pathologists vary in their interpretations 
of images and biopsy specimens, which are themselves of 
variable quality. But these sorts of errors occur randomly, 
with underestimates likely to be balanced by overestimates 
over large numbers of measurements. Consequently, in 
clinical trials, such errors are equally likely to favor 1 treat-
ment group over the other and very unlikely to favor either 
substantially when averaged over large numbers of tests. 
Random error adds variability to results, which degrades 

statistical power, but power can always be augmented by 
increasing the numbers of patients and/or measurements.

Nonrandom errors that affect treatment groups differ-
ently are a major threat to study validity. Measurement bias, 
that is, error resulting from distortions of a measurement 
process, and thus not expected to average out over many 
measurements, can compromise even large RCTs. For exam-
ple, suppose investigators are evaluating the effect of a new 
drug on postoperative nausea and vomiting. And let us say 
that both the investigators and patients know whether they 
have been assigned to the experimental or control group. 
Does knowing the treatment influence the amount of nau-
sea and vomiting reported? It almost surely does: patients 
(and some physicians) typically assume that the novel treat-
ment is better, and overestimate its benefits, even when the 
new treatment is actually a placebo or the same drug as in 
the control group.2 They make this assumption even though 
superiority is actually unknown, and comparing the novel 
and conventional treatment is the entire point of the study. 
The effect is so strong that IRBs typically forbid investigators 
to describe the experimental treatments as novel because 
patients assume “new” implies “new and improved.”

Overestimation of benefits is, of course, most likely with 
subjective outcomes such as pain or nausea and vomiting. 
But improvement also occurs with supposedly objective 
outcomes, possibly because patients expect to do better 
and that expectation alone improves physical character-
istics such as immune function. Improved outcomes are 
welcome of course, but it would be a mistake under these 
circumstances to conclude that the novel therapy caused 
the improvement. The same logic applies to complications, 
which are often underestimated for novel treatments.

Fortunately, if done effectively, blinding can largely elim-
inate measurement biases by equalizing errors over treat-
ment groups so they do not skew treatment comparisons. 
Blinding in research is defined by concealing which treat-
ment a patient actually receives. Full blinding prevents bias 
in the measurement process because patients, clinicians who 
treat them, and all who evaluate their health outcomes do 
not know which treatment—the experimental or control—
has been provided. Patient responses, and the processes by 
which physicians and investigators measure them, are thus 
not affected by their impressions about the superiority of 
novel treatments. Any inherent biases in the measurement 
process, whether random or systematic, are experienced by 
each study group equally and will tend to cancel out of the 
intergroup comparisons.

RANDOMIZED AND BLINDED STUDIES
In retrospective analyses of treatment outcomes, which 
by definition involve looking back in time, it is difficult to 
determine whether outcome differences result from base-
line differences in the group characteristics (selection bias), 
a third factor (confounding), nonrandom measurement 
errors (measurement bias), or from the treatment itself (the 
relationship of interest).

Limited ability to recognize distortions from bias and 
confounding weakens retrospective studies. But in prospec-
tive cohort studies, treatments can be randomly assigned to 
prevent selection bias and minimize confounding; further-
more, participating patients and clinicians can be blinded to 
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prevent measurement bias. Studies that incorporate the pro-
tections of randomization and blinding are called random-
ized, blinded clinical trials. And because the major sources 
of error are limited in such trials, they are considered to pro-
vide the highest level of clinical evidence.

Before randomized trials, it was difficult to objectively 
evaluate treatment efficacy, leading Oliver Wendell Holmes 
to comment: “If all our drugs could be sunk to the bottom of 
the sea, it would be all the better for mankind—and all the 
worse for the fishes.” Amazingly, the first major random-
ized trial, which evaluated streptomycin as a treatment for 
tuberculosis, was not conducted until 1948. Clinical trials 
have thus been an established part of medical research only 
for about the past 65 years.

Of course designed experimentation can only be done 
prospectively. And enrolling, treating, and monitoring a 
sufficient number of patients may take many years and con-
siderable expense. Thus, trials should be considered a scarce 
resource and used to address important questions sup-
ported by compelling mechanistic understanding and, pref-
erably, reasonable animal and previous human experience.

CONTINUOUS VERSUS DICHOTOMOUS OUTCOMES
Clinical signs of disease risk or progression, and thus 
prognostic of outcomes, are often measurable as continu-
ous variables, even though the outcomes they predict, and 
which patients directly perceive, are typically dichotomous 
or categorical. Examples include QT interval in relation to 
nonperfusing arrhythmias, such as torsade-de-pointes; dia-
stolic blood pressure in relation to myocardial infarction 
or ischemic stroke; and creatinine clearance in relation to 
development of end-stage renal disease. The first example 
is typical in that QT interval per se cannot be detected by 
patients and would only interest them to the extent that it 
might predict something they do care about, such as hav-
ing a cardiac arrest. That said, many continuous outcomes 
are clinically and economically important, such as length of 
critical care, duration of hospitalization, months of severe 
pain, or quality of life.

Continuous outcomes are easier than dichotomous out-
comes to study because continuous markers or mediators 
can often be usefully evaluated without awaiting ultimate 
patient outcomes, which can involve extended patient sur-
veillance. Moreover, because comparisons of patients with 
respect to dichotomous outcomes can only be of 4 sorts: both 
yes, both no, yes/no, or no/yes, whereas numerical values 
can be ordered and scaled by distance, there is simply more 
information in numerical markers than dichotomous out-
comes, even when the latter are far more important. A con-
sequence is that more patients must usually be studied to 
reliably distinguish treatments on the basis of dichotomous 
as compared with continuous outcomes, a difference that 
increases for infrequent events.

As thus might be expected, many and perhaps most clin-
ical trials designate continuous variables rather than more 
important dichotomous variables as their primary out-
comes. There is an implicit assumption that what improves 
the continuous predecessor will similarly benefit the later 
patient outcome, although this does not always prove to 
be the case. Despite the costs, ultimately, decisions about 
comparative benefit to patients are thus best based on 

unambiguous dichotomous outcomes that damage patients 
in perceptible ways.

SUBJECT SELECTION
When selecting participants for clinical trials, there is inher-
ent tension between the scientific requirements of demon-
strating treatment benefit conclusively and the desire for 
results that are widely clinically useful. This relates to the 
distinction between internal and external validity of a study.

Internal validity denotes the strength of design and 
analysis of a study in protecting from spurious conclusions 
about similar participants such as might otherwise arise 
from reverse causation mix-ups, selection and measure-
ment biases, confounding, and chance. External validity 
refers to applicability of research results to persons differ-
ent from participants, conditions different from those of the 
trial, other doses, other routes of administration, or even 
other agents within a given pharmaceutical class.

Restricting participants to a near-homogeneous group 
reduces outcome variability, which reduces the sample size, 
time, and cost needed to obtain statistically significant dif-
ferences between treatments, assuming one exists. It can 
also narrow the spread of potential confounders, which 
limits the distortion confounding can produce. It is also 
reasonable and ethically appropriate to restrict enrollment 
to patients who are (1) especially likely to benefit from the 
experimental intervention and (2) unlikely to suffer compli-
cations. A consequence is that most clinical trials evaluate 
only small subsets of potential populations of interest.

Although there are compelling reasons to restrict trial 
enrollment, technically results of any trial apply only to 
patients similar to those who were studied. The problem 
is that many randomized trials are nonrepresentative, fail-
ing to include even substantial minority populations, along 
with subjects who cannot read, do not speak the dominant 
language, or have cognitive impairment, all of which com-
plicate obtaining valid consent. Because enrollment is often 
highly restricted, many trials suffer from poor generaliz-
ability; that is, results may extrapolate poorly to the great 
majority of patients who might benefit from the experimen-
tal treatment.

The difficulty, of course, is that clinicians rarely care 
for patients whose characteristics and background closely 
match those who participated in relevant trials. In clinical 
practice, we thus need to make reasonable extrapolations 
from existing data to our patients. Extrapolation is almost 
always preferable to the alternative (best clinical judgment 
or “making it up”), but confidence in various extrapolations, 
especially among competing study results, is enhanced 
when studies include broad populations. In practice, real-
world applications of new treatments usually prove to be 
less effective and more toxic than reported in clinical trials. 
Table 1 summarizes the advantages and disadvantages of 
loose and tight clinical trial enrollment criteria.

Generally speaking, observational studies such as retro-
spective cohort analyses tend to include broad populations. 
Consequently, their results, if correct, tend to generalize 
well. However, their internal validity is often degraded 
by unknown amounts of confounding and selection and 
measurement bias, making it difficult to assert correctness 
confidently. Tightly controlled clinical trials with restrictive 
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enrollment have the opposite problem. Randomization and 
blinding limit bias and confounding, resulting in high inter-
nal validity; however, trial external validity often suffers as 
a direct consequence of tight enrollment criteria.

A further factor to consider is that the results of even the 
best clinical trial apply to the typical patient in each group. 
But it remains possible—and perhaps probable—that a 
treatment that on average is beneficial might be harmful for 
particular members of the group. Similarly, toxicity might 
be substantial for certain members of a particular study 
group, even if on average toxicity was less with the desig-
nated treatment. In fact, such divergent results are some-
times predictable and are termed practice misalignments.3 
They result when enrollment criteria are broad and the 
study intervention is one that is typically titrated by clini-
cians; for example, designating fixed low and high concen-
trations of vasopressors for treatment of sepsis, rather than 
allowing clinicians to titrate lower concentrations for less 
severe disease and higher concentrations in more critical 
patients.4

CROSSOVER TRIALS
The prototypical clinical trial is a randomized and blinded 
parallel-group prospective cohort study. In such studies, 
patients are randomly assigned to 1 of ≥2 treatment groups, 
and patient outcomes are compared among these groups. 
Statistically, the challenge with this approach is separat-
ing background population variability from the treatment 
effect. If the treatment effect is large (say comparing a 
highly effective treatment with placebo), it is often easy to 
isolate the effect of an experimental treatment. But in an era 
where there are many effective treatments for most condi-
tions, the much more common problem is to identify small 
incremental benefits. And those can easily be obscured by 
natural variation in the population.

An alternative to comparing ≥2 groups of different 
patients is thus to randomly compare ≥2 treatments in the 
same patients, that is, use a crossover design.

Specifically, a single group of subjects is exposed to 
≥2 treatments, with each patient crossed over from one 
treatment to another in a random order. This approach is 
statistically efficient because the comparison is between 
treatments within each patient. Patient variability across the 
population thus largely drops from the analysis because, 
instead of comparing patients with other patients to deter-
mine treatment effects, the response of each patient to a 
treatment is first compared with his or her own responses 

to other treatments, and these within-patient differences in 
responses are then aggregated across patients.

The more that patients vary from one another, the 
greater the increase in sensitivity—statistical power—to 
detect a treatment benefit between paired t tests and related 
methods used in a crossover trials and unpaired t tests and 
related methods used for parallel-group trials. The biggest 
advantage of crossover trials is thus that, by minimizing the 
effects of population variability, it is easier to observe spe-
cific intervention effects, and with far fewer patients than 
would be needed than with a parallel-group approach.

Unfortunately, however, substantial limitations of cross-
over designs often preclude their use. For example, they 
assume that the underlying disease process is static over 
the trial’s duration and that treatments have no permanent 
residual effects, so that the condition of a patient when the 
second treatment is initiated is no longer affected by the 
first treatment and is similar to when the study started. 
Surgery, for example, never qualifies and often a wash-out 
period of no therapy is required to restore the patient to a 
baseline state. A corollary is that crossover trials can only 
evaluate transient symptoms and signs, mediators, and 
soft outcomes such a laboratory tests, patient function, or 
hemodynamic responses. They are thus perfect for compar-
ing ≥2 analgesics for control of persistent and stable pain 
or of statins for blood cholesterol reduction. But crossover 
designs cannot directly address far more important ques-
tions, such as which statin most reduces the risk of a heart 
attack or mortality.

FACTORIAL DESIGNS
Factorial designs have been used in other fields for decades, 
but only recently have they become well established and 
increasingly common in medicine.5 The basic approach is 
to simultaneously randomly assign patients to ≥4 interven-
tions. For example, patients in a single study might be ran-
domly assigned to clonidine or a placebo for clonidine and 
to aspirin or a placebo for aspirin. The randomization might 
be arranged so that the fraction of patients given 1 treat-
ment, say clonidine, does not depend on whether or not 
the patient receives the other treatment, say aspirin. This 
avoids confounding, that is, contaminating, the effect of 1 
treatment with that of the other, so that the overall cloni-
dine effect can be evaluated without regard to aspirin, and 
vice versa.6,7 These overall results are called marginal effects 
because, when results are conventionally described in a 2 × 
2 table with rows representing 1 treatment axis (e.g., cloni-
dine or clonidine placebo) and columns representing the 
other (aspirin or aspirin placebo), they appear at the edges, 
or margins, of the table. Effectively, then, 2 studies are con-
ducted simultaneously in the same group of patients. This 
approach is obviously efficient, in that 2 hypotheses can 
be tested with only slightly more patients than would be 
required for each question alone.

Another important benefit of factorial designs is that 
they allow investigators to evaluate effect modification, that 
is, the interaction between treatments, as well as their mar-
ginal effects. Consider, for example, a large trial of clonidine 
versus placebo and consider a separate large trial of aspirin 
versus placebo. The results of the first would presumably 
clearly identify the benefit (if any) from clonidine, and the 

Table 1.  Subject Selection Strategies
Tight criteria
    Reduce variability and sample size
    Exclude subjects at risk of treatment complications
    Include subjects most likely to benefit
    May restrict to advanced disease, compliant patients, etc.
    Slow enrollment
    Best case results (compliant low-risk patients with ideal disease stage)
Loose criteria
    Include more real-world participants
    Increase variability and sample size
    Speed enrollment
    Enhance generalizability
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results of the second would identify the effects of aspirin on 
the designated outcome. But no matter what the results, cli-
nicians would reasonably ask what might be expected when 
the 2 treatments are combined.

The answer to that important question cannot be deter-
mined from 2 independent trials but is readily available 
from an adequately powered factorial trial. Note, however, 
that interactions are typically smaller than main effects and 
thus require larger studies to reliably detect. Moreover, once 
an interaction is detected, the study, in effect, breaks into 
pieces because the effect of each treatment now must be 
evaluated separately with and without the other, with only 
half the original number of patients available to do this, and 
thus losing an important benefit of the factorial approach.

A disadvantage of factorial trials is their increased com-
plexity, both in study conduct and potentially in interpreta-
tion. Another disadvantage is that each intervention usually 
has at least slightly different contraindications, but only 
patients who can be randomly assigned to each potential 
intervention can be included, thus narrowing the group of 
eligible patients.

A complex anesthesia study using a 6-way randomiza-
tion of various antiemetic strategies and powered not only 
for marginal effects but also for second- and third-level 
interactions among the treatments exemplifies the strengths 
and limitations of such designs.8

BEFORE-AND-AFTER STUDIES AND CLUSTER 
TRIALS
Many patient characteristics—such as smoking status, race, 
sex, and obesity—cannot be randomized. Other interven-
tions, such as changes to health systems per se, for example, 
introduction of electronic records, a new billing system, or 
a clinical pathway, cannot be randomized on an individ-
ual basis. These require extensive system and behavioral 
changes, months or years to implement, and cannot be 
undertaken or reversed on a patient-by-patient basis. But 
such system interventions are arguably among the most 
important changes to evaluate, with huge potential impact. 
How then to study them?

The most common approach for evaluating system inter-
ventions is a before-and-after analysis. However, this is a 
weak study design because it is nearly impossible to account 
for 4 important sources of error. The first is that most aspects 
of health care improve over time. And although it is tempt-
ing to attribute improvement to a specific intervention of 
interest, many aspects of care inevitably change simultane-
ously. The intervention of interest is thus confounded by 
other simultaneous interventions or other changes, which 
are often unrecognized, such as subtle caregiver behavioral 
changes.

Consider surgical wound infections. The monthly inci-
dence of surgical wound infections varies considerably, 
even in large high-quality hospitals. Why the incidence 
varies remains unknown, which speaks to the many fac-
tors contributing to this key safety and quality metric. 
When wound infections spike, as they do from time to 
time, high-quality hospitals recognize the problem and 
evaluate ameliorative approaches. Almost inevitably, this 
involves discussions among infection-control specialists, 
nurses, surgeons, and anesthesiologists. But it also involves 

environmental experts who assess operating room airflow, 
filter integrity, and bacterial colonization of caregivers and 
the air-handling system. Simultaneously, there is renewed 
focus on hand washing, surgical-site preparation, and 
proper draping.

The attentions of all these experts and efforts among 
caregivers are invariably successful, and the surgical wound 
infection incidence soon returns to the expected level. But 
why? A likely reason is that the high infection incidence that 
triggered concern was simply random variation and never 
reflected a systematic increase that would be expected to 
persist. If so, the infection incidence’s subsequent return to 
baseline level was simply regression-to-the-mean, the third 
major problem with before-and-after studies.

Let us say, however, that the original increase in the 
wound infection incidence was real and that the subse-
quent return to baseline risk reflected enhanced care. Even 
assuming real improvement, a major problem with before-
and-after studies is that it remains unrealistic to attribute 
improvement to a single intervention because several were 
introduced simultaneously, and it is essentially impossible 
to determine the extent to which the benefit of one was con-
founded with the benefits of others.

The fourth weakness of before-and-after studies is the 
Hawthorne effect. The term was introduced by Henry 
Landsberger based on studies conducted at the Hawthorne 
Works, a Western Electric factory near Chicago.9 What 
Landsberger noticed was that tiny environmental changes 
(such as more illumination) improved productivity and sat-
isfaction, but only briefly. In fact, most any change briefly 
improved productivity—including subsequently reducing 
illumination levels! But because the improvements were not 
sustained, he correctly concluded that they resulted from 
employee engagement in the process rather than the envi-
ronmental change per se.

The Hawthorne effect is undoubtedly useful in that 
worker engagement improves quality and satisfaction. 
For example, anesthesiologist-driven changes in depart-
mental call schedules improve satisfaction even when the 
total workload is unchanged. Skilled chairs thus encourage 
member-driven process improvement discussions because 
engagement in this very process improves quality and sat-
isfaction. The difficulty is that before-and-after studies often 
attribute all improvement to a specific factor, ignoring the 
very real improvement that comes just from the process of 
discussing changes (to say nothing of other simultaneous 
improvements).

An alternative to before-and-after studies, with all their 
weaknesses, is cluster randomized trials. Cluster random-
ization refers to randomly allocating treatments to entire 
groups or clusters, in a one-for-all fashion, en masse. 
Clusters might consist of classes attending continuing med-
ical education events, all patients of individual primary care 
providers or entire group practices, patients or clinicians at 
individual outpatient clinics affiliated with a health care sys-
tem, or groups of employees of several different hospitals.

The difficulty, of course, is that entire care systems within 
a hospital, or even entire hospitals, need to be randomized 
and each becomes a unit of analysis. Statistically, each care 
unit or hospital is treated more-or-less the way a single 
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patient would be in a conventional trial. In other words, sta-
tistical analysis is not based on the number of patients but 
on the number of units that are randomized. Considering 
the logistical challenges and cost of such trials, it obvious 
why they are uncommon although well-conducted cluster 
randomized trials can yield invaluable information.10,11

Escalating costs of large RCTs have prompted consideration 
of other ways to accrue and study large numbers of patients 
quickly at low cost. One possibility is an alternating interven-
tion trial, a nonrandomized extension of a quality improve-
ment demonstration approach that we mention here because 
of its utility and importance under special circumstances, espe-
cially when combined with electronic data capture.

Quality improvement projects typically at most use a 
before-and-after approach to evaluating treatment effect. 
For example, surgeons might switch to a new skin prepa-
ration routine and then evaluate the incidence of wound 
infection before and after the change. Very often, the switch 
will appear salutary—but quite possibly because of unrec-
ognized concomitant changes, regression to the mean, or 
the Hawthorne effect. The true benefit (if any) of the new 
skin preparation technique is essentially impossible to 
determine with this approach.

Now consider an alternative and stronger study design. 
Say an anesthesia department is considering switching from 
sevoflurane (more expensive but shorter acting) to isoflu-
rane (less expensive but longer acting) but is concerned 
the switch might prolong hospital stays. Instead of simply 
changing anesthetics and a before-and-after comparison, 1 
anesthetic can be used exclusively for a couple of weeks and 
then the other for a couple of weeks, with continued alterna-
tion for several months. Note that this is not an individual 
patient randomization; in fact, the trial is not randomized at 
all or necessarily blinded. But in the course of say a dozen 
switches, other process improvements and any regression 
to the mean may reasonably be expected to average out, 
letting the investigators isolate the nearly pure effect of 
anesthetic choice on duration of hospitalization. This expec-
tation is most warranted when the intervention involves a 
relatively inconspicuous and noncontroversial aspect of an 
overall treatment process, in contrast to a major change in 
treatment approach.

Alternating intervention approaches work especially 
well when the intervention treatment is easy to switch, and 
the studies can be inexpensive when the outcomes are elec-
tronically recorded or otherwise easy to obtain. However, 
because of the lack of randomization and blinding, such 
studies can be completely invalidated if some clinicians 
preferentially schedule patients or surgeries or if discharge 
decisions are influenced by which treatment is in effect that 
week or by secular factors correlated, for whatever reason, 
with both the alternation cycle and the outcome—here, 
duration of stay (for an example of an alternating interven-
tion trial, see the study by Kopyeva et al.12). Note that a 
stepped-wedge approach to introducing an intervention at 
multiple sites can gain some, but not all, benefits of alternat-
ing intervention approaches.

Although alternating intervention trials share aspects 
of quality improvement studies, they are very much real 
research and absolutely require IRB approval. And of course, 
only selected quality-related interventions are appropriate. 

But when the novel intervention is reasonably expected to 
be at least as safe and effective, and possibly better or less 
expensive, many IRBs will approve this sort of trial with 
waived consent.

COMPOSITE OUTCOMES
Large trial sizes, factorial designs, and composite outcomes 
are among the major trends in clinical trials.5 The use of 
composite outcomes is increasing because they offer distinct 
advantages for studies with dichotomous outcomes—which 
include most hard outcomes such as major complications 
and deaths. Composites combine ≥2 components into a sin-
gle summary, typically dichotomous, which then becomes 
the basis for analysis.

There are 2 major advantages to composite outcomes. 
The first is that a single measure may poorly character-
ize the anticipated effect of an experimental intervention. 
Consider guided fluid management, which may help pre-
vent respiratory failure, protect the kidneys and reduce the 
risk of wound complications. There is little clinical basis for 
choosing just 1 of these complications as the primary end 
point of a trial because each is important. Furthermore, an 
outcome such as wound complications includes infection, 
dehiscence, anastomotic leak, abscess, etc. A composite out-
come that includes all these potential clinical events thus 
has better construct validity, meaning that it more fully 
characterizes the potential overall benefit of guided fluid 
management, than its single components.

The second major advantage of composite outcomes 
relates to sample size. Sample size for studies with dichoto-
mous outcomes is determined by baseline incidence of the 
outcome and the expected treatment effect. Treatment effect 
can be enhanced by optimal patient selection but is other-
wise a function of the intervention. Baseline outcome inci-
dence, however, is increased in a composite because each 
component contributes. Thus rare outcomes can be evalu-
ated if a sufficient number are combined into a composite. 
The alternative approach, considering each component 
as an independent primary outcome and taking a statisti-
cal penalty for using multiple parallel significant tests, 
each incurring separate risk of false-positive error, vastly 
increases the number of patients required. Composites thus 
allow investigators to simultaneously combine clinical rel-
evant outcomes and reduce sample size.

The most common form of composite is a simple col-
lapsed composite in which the first occurrence of any com-
ponent makes the composite positive. The general rule for 
a collapsed composite is that its components should be of 
comparable severity and have roughly similar incidences. 
For example, it would be a poor idea to use an infection 
composite that combines organ space infection, deep ster-
nal infection, abscess, sepsis, and urinary tract infection. 
Urinary tract infections are far more common than all the 
other components combined, to say nothing of being far 
less serious. The proposed composite is thus essentially just 
a measure of urinary tract infection, which is not what the 
investigators really want to assess.

A further assumption of composite outcomes is that 
treatments at least change component outcomes in the same 
direction (i.e., between no change and improved). When 
outcomes respond quite heterogeneously to a treatment, 
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composites become difficult to interpret. Consider, for exam-
ple, a composite of vascular complications that includes 
myocardial infarctions and stroke. β-Blockers affect each 
differently, significantly reducing myocardial infarctions 
while increasing stroke.13 Simply adding the incidence of 
each (1 positive and 1 negative) might wrongly imply that 
β-blockers have little overall effect, whereas they in fact 
have clinically important, but divergent, actions.

Fortunately, there are alternatives to simple collapsed 
composites. In fact, there are many ways to construct and 
analyze composites, some of which avoid the general 
requirement for components to have comparable incidences 
and severities (for more detail about composite outcomes 
and associated statistical complexities, see Mascha and 
Imrey14 and Mascha and Sessler15).

SAMPLE SIZE, INTERIM ANALYSES, AND 
STOPPING RULES
Before the mid-1970s, clinical trialists were faced with an 
uncomfortable choice between adequate trial monitoring 
and controlling chance error. Well-designed trials were 
planned to control the potential for false-positive and false-
negative results within what were considered acceptable 
limits, often 5% for the chance of false-positive results and 
10% or 20% for the chance of false-negative results. But such 
performance characteristics were based on the assumption 
that trials would be analyzed only once when results from 
all patients had been obtained.

Investigators, however, would often monitor accumu-
lating results that, depending on how trends developed, 
might raise concerns about the ethical basis or financial 
advisability of continuing to enroll patients. Investigators 
might also informally evaluate results as they accrued and 
stop trials when their efficacy results reached statistical 
significance. The difficulty with this approach is that such 
multiple unprotected looks at the data for efficacy signals 
substantially increase a study’s chance of false-positive 
error. Similarly, multiple looks for possible safety concerns 
increase the chance of stopping too early because of tran-
sient random imbalances in adverse events and thus the 
chance of a false-negative error.

Multiple looks are problematic because trial results are 
influenced not only by true population differences but also 
by the vagaries of chance in how these play out over time, 
as results from a particular clinical trial sample accumulate. 
Observed values at various times during the trial are thus 
sometimes greater than the true population differences, if 
any, and at other times less. The degree to which observed 
values differ from true population values is a function of 
sample size, with more variability being observed in small 
studies, which is why power improves with larger size.

The trouble is that investigators who evaluate data as it 
accrues, even informally, and stop a study when the results 
look good, are effectively choosing a random high point 
on the difference curve as it evolves over time. Because the 
chance that a random curve will meet any particular fixed 
criterion at any one of many possible times is, by defini-
tion, greater than the chance it will meet that criterion at 
a single predetermined time, random false-positive and 
false- negative errors will be far more likely with multiple 
looks than with a single evaluation at the end, unless the 

statistical significance criterion is made more stringent to 
account for multiple interrogations of the data. The risk of 
overstating treatment effects is not restricted to formal anal-
ysis and remains even if data are only informally inspected 
by investigators. Multiple unprotected evaluations of data 
may, in part, explain why many studies, especially small 
ones, are subsequently contradicted.16

Group sequential clinical trials, proposed by Pocock 
et al.17 and extensively developed since, provide a menu of 
practical solutions to this problem. Within this framework, 
multiple looks at trial results are completely acceptable if 
governed by a formal interim analysis plan incorporated 
in the clinical trial design. Rather than allowing each addi-
tional look to further increase the chances of false-positive 
and/or false-negative conclusions above the target levels, 
5% and 20% for instance, group sequential designs reduce 
the error probabilities at each look, so that the original, 
planned overall false-positive and false-negative error pro-
portions for the entire study are maintained.

In practice, the total false-positive risk (i.e., α = type 1 
statistical error probability) is distributed across each of the 
analyses at different times to keep the total at 5%, for exam-
ple. The simplest way to do this, although conservative, is 
to divide the intended α-risk by the number of analyses. So 
if there are 3 interim looks planned, plus a final evaluation, 
each might be assessed at 0.05/4 = 0.0125 = 1.25%. That is, 
only P values <0.0125 would be considered statistically sig-
nificant at any given analysis. A similar process can be used 
to distribute risk of false-negative error (β = type 2 statistical 
error probability) over various analysis points (Fig. 1).

Most investigators regard taking equal chances of error 
at early and late times as placing too much emphasis and 
risk of error early, when few results are available, at the 
expense of too little emphasis late, when most or all the 
results are known. In practice, various formulas are used 
to distribute risks of false-positive and false-negative errors 
in ways that allow investigators to better satisfy ethical and 
financial concerns by stopping trials early when data are 
already sufficiently conclusive as to relative efficacy and/
or safety or when it is clear that continuing the trial cannot 
achieve the intended objective. Most trials are designed to 
be increasingly sensitive at later times, with the final test, 
if the trial does not stop early, only slightly more stringent 
than its fixed sample size counterpart.

Often, the weighting over time for α- and β-risks differs. 
For example, investigators may want to stop the trial early 
if there is no evidence of efficacy but continue to a much 
larger number of patients if the treatment looks effective. 
This is equivalent to cutting your losses when the treatment 
does not appear effective but requiring a high degree of evi-
dence if it does.

Group sequential designs exact a price for their flexibil-
ity. The sample size planned for such a design is always 
larger than that needed for a single-look design with the 
same error probabilities (α and β) and hence the same sta-
tistical power. However, the difference is usually not large 
and is mitigated because, in practice, the actual sample 
size accrued is reduced when the trial stops early. Thus, 
one must plan for a modestly larger sample size than for a 
1-look trial; but on average, group sequential trials require 
fewer patients, often substantially fewer, because many 
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such trials can be stopped early. Trials that are stopped early 
for unplanned reasons overstate statistical significance if 
knowledge of accumulated results informs the stopping 
decision. But a study that is stopped per rule at a scheduled 
interim analysis is not a “stopped early” trial because it was, 
in fact, stopped as planned by protocol.

Because group sequential designs have so many advan-
tages, many modern trials include 1 or periodic interim 
analyses. Most use O’Brien-Fleming stopping boundaries, 
for which statistical penalties are relatively small. However, 
each interim look at the data requires special data quality 
control and database activities, a formal statistical analysis, 
and review by an executive committee and/or data safety 
monitoring board. There is thus some fixed cost to each 
interim analysis. The amount of relevant new information 
that becomes available during any calendar period between 
looks, and the potential benefits of stopping at the begin-
ning rather than at the end of the period, will vary among 
trials and during the course of a single trial, depending on 
the absolute and relative durations of the patient enroll-
ment, treatment, and follow-up periods and the risks and 
potential benefits of the experimental treatment. In our 
experience, ≤3 interim looks usually provide sufficient 
flexibility at the cost of a small increase in the maximum 
required patient enrollment and a manageable amount of 
additional statistical and administrative work.

Depending on the size and nature of the trial, interim 
analyses might be reported to an executive committee or 

a completely independent data safety monitoring board. 
Typically, they are presented on a group A versus group B 
basis because the decision to stop or continue the trial should 
usually be independent of the group assignments. Interim 
analysis results should not be shared with investigators 
involved in data collection to reduce the risk of bias. Although 
the statistical properties of group sequential trial designs pre-
sume strict adherence to their stopping rules, in practice such 
bodies consider these statistical rules as guidance, taking into 
account the scientific context of the study and other factors 
when making stop-versus-continue decisions.

For studies with normally distributed continuous out-
comes, the primary determinants of sample size are out-
come variability and treatment effect (difference between 
the study groups). For dichotomous outcomes, the pri-
mary determinants are baseline incidence and treatment 
effect. Furthermore, the number of study subjects needed 
increases rapidly, in proportion to the inverse square, as 
treatment effect is reduced. Although less important than 
whether data are continuous or dichotomous, the statistical 
analysis approach also influences the sample size.

At a baseline incidence of 20%, for example, it takes only 
398 patients—199 per group—to give a balanced 2-arm 
study 80% power at a 5% α for detecting a 50% reduction in 
the outcome incidence. But, there are few new interventions 
that provide anything resembling a 50% treatment effect. 
Given the same baseline risk, powering the study for a 25% 
risk reduction would require 1812 patients. And for a 20% 
risk reduction, 2894 patients are needed. The difficulty is that 
20% is often the largest treatment that might realistically be 
expected,  and a trial of that size might miss even smaller 
effects that would be considered highly clinically important.

Of course, treatment effect is not known when investi-
gators begin a trial. After all, the point of a trial is exactly 
to determine treatment effect. Nonetheless, comparative 
clinical trials would rarely meet ethical standards unless 
based on reasonable mechanistic, animal, and some human, 
data. Thus investigators usually have at least some basis for 
expecting effect at a given magnitude. Another consider-
ation is clinical importance; there is no point in powering 
a study for an effect that would not be considered clinically 
important. The general approach is thus to power trials for 
plausibly anticipated treatment effects of clinically impor-
tant magnitude.

Sample size estimation is straightforward for single-look, 
2-group trials. But the calculations quickly get difficult, 
and numerical simulations may be required when dealing 
with multivariable analysis, nonparametric distributions, 
composite outcomes, factorial designs, multiple looks, sur-
vival or cumulative incidence analyses, and other design 
complexities.15,18 But in all cases, the most problematic part 
for investigators is developing realistic estimates of base-
line incidence, population variability, treatment effect, and 
potential patient enrollment rate. Too often, these estimates 
are optimistic, resulting in underpowered trials.

EQUIVALENCE AND NONINFERIORITY TRIALS
A placebo is the natural comparator in a trial conducted sim-
ply to show that an experimental treatment provides some 
degree of benefit. Historically, such placebo-controlled trials 
have confirmed scientific and clinical breakthroughs against 

Figure 1. Observed standardized differences in primary postopera-
tive sore throat proportions (green line) at 2 interim analyses (at 
N = 79 and N = 179) and the final analysis (at N = 235) of a clini-
cal trial comparing an experimental licorice-based gargle to a sugar 
solution for prevention of sore throat and postextubation coughing. 
The upper and lower blue areas are stopping regions for benefit and 
harm of the licorice solution, respectively; the pink region desig-
nates early stopping for futility, and non-significant final differences. 
Although statistically significant efficacy was demonstrated at the 
second interim analysis based on 150 patients, this minimal risk 
the study was nevertheless continued to 235 patients to assess 
treatment benefit more precisely. This trial had a >50% chance of 
early stopping after 150 patients due to futility, had there been no 
real licorice benefit. Reprinted from Ruetzler K, et al. A randomized, 
double-blind comparison of licorice versus sugar-water gargle for pre-
vention of postoperative sore throat and postextubation coughing. 
Anesth Analg 2013;117:614–21.
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previously untreatable medical problems. When comparing 
a novel experimental treatment with an inactive placebo, 
the only relevant question is superiority of the presumably 
active experimental agent. In practice, such studies often 
use 2-sided statistical hypothesis testing to recognize harm 
when it occurs, but the hope is to demonstrate a difference 
in patient responses that favors the treatment.

Increasingly, however, new treatments emerge for prob-
lems for which ≥1 existing therapy is already accepted as 
effective. In such cases, comparison with placebo may be 
insufficient to support the use of the new treatment, and the 
provision of some active therapy to research subjects is usu-
ally considered an ethical imperative. Instead of superior-
ity to a placebo, investigators may thus seek to show that a 
novel intervention is at least as good as an active, accepted 
alternative. For example, a new patient-warming system 
that is less expensive and easier to use might be considered 
an improvement over a conventional system, even if it does 
not warm patients any better.

The statistical approach in such cases is to demonstrate 
that the new treatment, while it may or may not be superior 
to its competitor, is not enough worse to clinically matter. 
Not enough worse, euphemistically termed noninferiority, 
is defined in terms of a clinically important noninferiority 
margin, a performance decrement defined as the boundary 
between a reduction in performance that is ignorable and one 
that is considered unacceptable. Noninferiority is demon-
strated when a 1-sided confidence interval for a comparative 
measure of treatment efficacy excludes underperformance by 
greater than or equal to the noninferiority margin.

Equivalence trials are symmetric, bidirectional noninfe-
riority trials: “not enough different” must be shown in both 
directions, such as by a 2-sided confidence interval that 
excludes sufficiently large differences favoring either of the 
treatments being compared. Although noninferiority stud-
ies are far more common, equivalence studies are needed 
when the purpose of the treatment is to regulate and main-
tain a physiologic parameter within an established target 
range, as for hormonal agents such as thyroxine and insu-
lin or for anticoagulants such as heparin and warfarin. The 
relationships between superiority, equivalence, and nonin-
feriority approaches are shown in Figure 2 (for additional 
detail, see a recent review.19).

TRIAL SIZE
Trial size matters!20 In 1000 independent flips of a coin, the 
proportion of heads will very likely fall within ±3% of the 
expected proportion of 50% and thus give a precise esti-
mate of the truth, meaning the coin’s long-run proportion, 
or chance, of heads. Because flipping the coin 1000 times 
again would likely produce another result within the same 
range, the 2 sequences of coin flips will be fairly close, usu-
ally within 6% of one another.

But now consider flipping the same coin just 10 times. 
It would be unsurprising to observe a proportion of heads 
anywhere from 30% to 70% or for that matter from 20% to 
80%. Nor would it be surprising to find that the proportion 
of heads in a second 10 flips departs considerably from the 
proportion among the first 10. Such a study (10 coin flips) 
therefore does not produce either a stable result from one 
repetition to another or a precise estimate of the truth: its 

results are fragile. This intuitive comparison illustrates the 
the probabilistic Central Limit Theorem that, other things 
being equal, the precision of a study improves in proportion 
to the square root of the number of subjects. Or, to put this 
in practical terms, the larger the study, the more likely it is 
that the results will closely reflect the target characteristics 
of the underlying biological system and be closely repli-
cated if the study was repeated.21

Another reason trial size matters is that randomization 
only assures that the treatment groups will be comparable 
in sufficiently large trials. In large trials, treatment groups 
will almost always be very similar. But in small trials, by 
pure bad luck, the treatment groups may differ enough for 
such differences to distort (by confounding) the results. The 
number of patients required to provide reasonable assur-
ance of baseline homogeneity is considerably larger than 
generally appreciated. For example, with 100 patients per 
group in a 2-arm trial in a population with men and women 
equally represented, the fractions of men and women will 
differ between groups by >10% in 15% of such trials and by 
>7% in a third of them.

As noted above, the number of patients needed for vari-
ous types of studies depends on a host of factors, includ-
ing the type of outcome, its incidence if dichotomous and 
variability if quantitative, the duration of follow-up, and the 
outcome difference between the experimental and control 
treatments (treatment effect) that the study is intended to 
detect. But larger trials increase the precision in estimating 
the treatment effects and always enhance the confidence in 
the results.22 Large randomized trials often reverse medical 
practices that were based on small studies.23

It is worth considering that with a P value of 0.05, 
which is generally considered significant, the probability 
of a repeat trial being significant when the first trial has 
accurately estimated the true treatment is only 50%. The 

Figure 2. Sample confidence intervals and inference for trials 
assessing superiority, noninferiority, or equivalence of treatment T 
to standard S. NI = noninferiority. Notice, for example, that confi-
dence intervals for results B and C are identical, but the permitted 
conclusions quite different because the designs and hypotheses 
differ. [Reprinted with modifications from Mascha EJ, Sessler DI. 
Equivalence and noninferiority testing in regression models and 
repeated-measures designs. Anesth Analg 2011;112:678–87.]



Copyright © 2015 International Anesthesia Research Society. Unauthorized reproduction of this article is prohibited.

Randomized Controlled Trials

October 2015  Volume 121  Number 4 www.anesthesia-analgesia.org 1061

P value needs to be 0.005 for this replication probability to 
reach the conventional power criterion of 80% and 0.0001 
to reach 95%.24 These criteria have recently been suggested 
as replacements for the 5% and 1% P value criteria by 
which results are currently conventionally labeled statisti-
cally significant, or highly statistically significant.25 Note 
that significance conventionally means that, were there no 
real treatment effect, <5% of trials would be expected to 
produce a difference between outcomes of treatment and 
control groups as large as that observed (ignoring possible 
issues of bias). But that is not really what clinicians need to 
know; instead, they need bounds on the confidence inter-
vals around the observed treatment effect that are narrow 
enough to be clinically useful. Tight confidence intervals 
result from sample sizes well exceeding those required to 
barely confirm statistical significance.

CLINICAL EQUIPOISE
The ethical basis for randomized trials is equipoise. The 
term means that investigators and oversight bodies collec-
tively judge that the bases for favoring each treatment are 
roughly balanced, so that the groups receiving each treat-
ment are equally likely to receive greater benefit, with bene-
fit being broadly defined. For example, a novel intervention 
might be considered beneficial if it provided: (1) superior 
treatment effect; (2) comparable treatment effect with fewer 
side effects; (3) comparable treatment effect but is easier 
for patients or physicians to implement; or (4) comparable 
treatment effect at lower cost. Of course, many other cost-
benefit combinations are possible.

Equipoise is generally achieved by comparing an 
experimental treatment with the best existing treatment, 
to which it may or may not prove superior. A major task 
for IRBs is to judge that there truly is equipoise and that 
patients in the control group used for comparison are 
getting the best current treatment and thus are not being 
disadvantaged by participation in the trial. Note that the 
control group should receive at least best current local 
practice and preferably best available treatment. Thus, pla-
cebo controls should be restricted to situations in which 
there is no generally accepted treatment or with suitable 
rescue with clearly effective drugs (as in many pain stud-
ies). For example, it would seem questionable these days 
to conduct an antiemetic trial in which high-risk control 
patients were given a placebo now that many safe and 
effective treatments are available.

An important point is that during a trial, individuals 
may have strong (and varied) opinions about which treat-
ment is best. Nonetheless, participants and safety moni-
tors may agree that the trial will provide crucial evidence 
for adjudicating these opinions. In other words, indi-
vidual opinions and expectations do not preclude equi-
poise when there is a consensus that additional evidence 
is required. While it is tempting to assume that a novel 
treatment will be better (the source of much measurement 
bias), that turns out to be the case well under half of the 
time in substantial trials.26 History documents that it is 
very hard to predict whether a novel treatment will actu-
ally prove superior in terms of efficacy and safety—which 
is exactly why trials are necessary.

THREATS TO VALIDITY
Randomization and blinding provide excellent protection 
against selection bias, confounding, and measurement bias. 
However, there are numerous other threats to trial valid-
ity that compromise conclusions. Consequently, the frac-
tion of unrepeatable published trials is probably far higher 
than generally appreciated.16,22 Care in design, conduct, and 
reporting of trials is associated with improved validity.27

Inadequate trial size, as discussed above, reduces trial 
validity. But there are many other subtle threats to indi-
vidual studies and the medical literature in general. Among 
the most important is publication bias, which has consider-
able potential to seriously distort medical literature, and is 
hardly restricted to clinical trials.28

There are 3 main reasons why studies may not be pub-
lished. The first is that the study might not even be com-
pleted. To the extent that investigators see negative results 
while the study is in progress, they may decide not to com-
plete the project or a sponsor may decline to continue fund-
ing the project. (The bias inherent in this decision is why 
investigators and sponsors should normally be blinded 
to trial results, and why results should only be evaluated 
at predefined interim analysis points.) Trials may also be 
stopped because of inadequate enrollment.29 The resulting 
underpowered study may not be publishable even if the 
investigators wish otherwise, but often they do not even try.

The second reason negative studies may not be pub-
lished is that investigators often do not even submit nega-
tive results for peer review, concluding that the results are 
uninteresting or unlikely to be accepted. And to some extent, 
they may be correct that their work may not be accepted in 
their journal(s) of choice, which is the third reason negative 
results may remain unpublished. A more subtle problem is 
that corporate sponsors may deliberately restrict submis-
sion of negative results.30

Competent studies with negative results should be 
accepted for publication, but they may be given lower pri-
ority than positive results by reviewers and editors. The 
pervasive damage from publication bias is now better 
understood by editors who seem more willing to publish 
high-quality negative results. But to the extent that studies 
are stopped early without statistical justification, results are 
likely to be underpowered with an ambiguous rather than a 
truly negative result, reducing a publication’s attractiveness 
to journal editors.

The primary result of publication bias is that, for 1 reason 
or another, negative results are less likely to appear in print 
than positive ones. Obviously, this distorts the literature 
and makes it more likely that a clinician will conclude—
based on available evidence—that a treatment is effective 
when it actually is not. The problem is especially serious 
when available results are included in systematic reviews 
and meta-analyses that essentially assume that all results 
are available for analysis. Nonetheless, evidence suggests 
that meta-analyses of small trials are generally consistent 
with subsequent large trials.31

Design choices obviously influence the interpretation of 
study results. For example, using a placebo control rather 
than the best currently available treatment makes experi-
mental interventions appear superior. Although considered 
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unethical for serious diseases where there are effective alter-
natives, the practice continues because of pressure from spon-
sors and because the expected larger treatment effect allows 
smaller and less expensive trials. A more insidious approach 
is the use of control and experimental drug doses that are not 
comparable; to the extent that the experimental dose is func-
tionally higher, its efficacy will presumably be enhanced.

Loss to follow-up (attrition bias) is another subtle way 
trial results can be compromised, consider, for example, a 
trial comparing an effective analgesic—say morphine—with 
an ineffective experimental treatment. Patients randomly 
assigned to the experimental treatment will find their anal-
gesia inadequate and many will drop out of the study. And 
once out, they will no longer contribute pain scores or other 
outcome data. Those who remain will be the ones who have 
least pain or are otherwise pain tolerant. Their pain scores 
will typically be considerably lower than those of patients on 
the experimental therapy who dropped out. Average results 
for patients who remained in the study will thus far over-
estimate the analgesic benefit of the experimental treatment, 
perhaps even making it appear comparable with morphine.

Intention-to-treat analysis is a widely used strategy for 
countering such postrandomization biases, which, in effect, 
break the balance between treatment groups fostered by the 
randomization process. The intent-to-treat concept is neatly 
captured by the catch-phrase “Where randomized, there 
analyzed.” This analytic philosophy retains patients in the 
group to which they were randomly assigned, no matter 
what occurs during the trial. Patients who drop out of the 
study before the recording of an outcome are analyzed by 
using an imputed outcome, preferably by a multiple impu-
tation technique grounded in statistical theory but some-
times in practice by an average value in other patients or 
that patient’s last observation carried forward. Patients who 
remain in a study but are noncompliant with the assigned 
treatment, even those who switch to another treatment and/
or never receive the one randomly assigned, are analyzed as 
members of their original randomized group.

The intention-to-treat approach is counter intuitive, but 
well justified when understood. Retaining randomized 
groups as originally constituted assures that, in the analy-
sis, departures from assigned treatments and differential 
dropout will not exaggerate true treatment differences. In 
contrast, if dropouts and treatment crossovers are excluded 
from analysis, or crossovers analyzed in the groups to 
which they move, or other ad hoc approaches used, biases 
of unknown magnitude and direction may occur. Intention-
to-treat analyses thus protect against exaggeration of a true 
treatment effect, or even production of a spurious one, at 
the expense of potentially underestimating treatment effects 
and diminishing study power. But because intention-to-treat 
analyses also attenuate differences in harm, they are gener-
ally used only for efficacy comparisons, with adverse events 
compared between groups reflecting treatments actually 
received. Comparisons on this basis are termed per-protocol 
analyses and are often used for secondary analyses.

CONSORT REPORTING GUIDELINES
Various checklists and guidelines have been proposed for 
reporting of clinical trials, with the Consolidated Standards 
of Reporting Trials (CONSORT) guidelines being by far the 

most commonly used. Some journals now require authors 
to submit a specific checklist documenting that all relevant 
elements are addressed in their articles. But, with or with-
out a formal checklist, skilled reviewers will expect to see 
relevant critical components addressed.32,33

The CONSORT checklist includes 25 items, many with 
subelements. Among these, perhaps the most important are 
(1) type of trial (i.e., parallel group, factorial); (2) important 
changes after starting enrollment; (3) eligibility criteria; (4) 
interventions, with sufficient detail to allow replication; (5) 
completely defined prespecified primary and secondary 
outcomes;  (6) interim analyses, stopping rules, and sample 
size determination and justification; (7) how randomization 
was generated and allocation concealed; (8) blinding; (9) sta-
tistical methods; (10) subject enrollment, participation, and 
loss (usually presented as a diagram); (11) why the study 
ended, if not taken to completion; (12) baseline character-
istics for each group (usually a table); (13) outcomes with 
appropriate measures of variance; (14) harms in each group; 
and (15) public trial registration (registry and number).

The most obvious way for investigators to be sure of 
being able to provide each of the CONSORT elements is 
to incorporate them into protocols. Investigators can also 
consult the Standard Protocol Items: Recommendations 
for Interventional Trials (SPIRIT) checklist during the trial 
design phase.34

CONCLUSIONS
Randomized assignment of treatment excludes reverse 
causation and selection bias and, in sufficiently large stud-
ies, effectively prevents confounding. Well-implemented 
blinding prevents measurement bias. Studies that include 
these protections are called randomized, blinded clinical 
trials and, when conducted with sufficient numbers of 
patients, provide the most valid clinical research results. 
Although conceptually straightforward, design of clini-
cal trials requires thoughtful trade-offs among compet-
ing approaches—all of which influence the number of 
patients required, enrollment time, internal and external 
validity, ability to evaluate interactions among treat-
ments, and cost.

Because randomized trials are so expensive and time 
consuming, the number of patients required is an overrid-
ing concern. Many trials evaluate mediators or intermediate 
outcomes, often characterized by continuous measurements. 
Hard outcomes (i.e., myocardial infarction, respiratory 
arrest, or death) that are much more serious and interesting 
are usually dichotomous and thus require far more patients. 
Subject selection also influences the sample size by increas-
ing baseline event rates or reducing variability.

Crossover designs reduce required sample size but are 
limited to short-term interventions with minimal carry-over 
effects. Factorial designs are efficient, have the capacity to 
detect interactions, and can be used with any type of out-
come. And novel study designs, such as alternating inter-
vention approaches, can speed enrollment and enhance 
efficiency. The field of clinical trial design is rapidly evolv-
ing, and this review has attempted only a basic introduction. 
Estimating the number of patients required for a trial can 
range from trivial to extraordinarily complex depending on 
the trial design and is further complicated by inclusion of 
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interim analyses. Even beyond the basics of selecting a valid 
design for a particular problem, choices made within the 
context of a general trial design have considerable potential 
for enhancing a trial’s strength and feasibility. E
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