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Observational clinical studies are attractive because 
they are relatively inexpensive and, perhaps more 
importantly, can be performed quickly if the required 

data are already available. Epidemiologic and health ser-
vices investigators have used such approaches for decades. 
But until recently, surgical and perioperative retrospective 
studies were too often “100-patient chart reviews,” which 
rarely produced valid conclusions. Increasingly, though, 
the availability of electronic data and sophisticated statisti-
cal techniques makes retrospective observational studies of 
surgical and perioperative practices a valuable tool.

Especially in anesthesia, there has been a revolution in 
data quality and availability because of electronic anesthe-
sia and hospital records. Consequently, some institutions 
have large and dense (i.e., minute-to-minute) registries of 
anesthesia care. Often they are linked to related hospital 
databases, such as those from clinical laboratories and 
blood banks, and to outcomes such as duration-of-hos-
pitalization and date-of-death. Billing codes also provide 
valuable information about diagnoses and procedures 
although the intricacies and requirements of reimburse-
ment mechanisms, and of administrative record systems 
more generally, can sometimes distort clinical realities. 
To glean the most information from such registries, there 
are now several national registries that pool data from 
various institutions, notably the National Surgical Quality 
Improvement Project, Multicenter Perioperative Outcomes 

Group, and the American Society of Anesthesiologists 
Anesthesia Quality Institute.

Recent retrospective perioperative studies include data 
from tens-of-thousands to tens-of-millions of patients.1,2 
Large numbers per se limit research errors attributable 
to chance, but do not prevent bias and confounding, and 
can exacerbate their effects by inducing overconfidence in 
biased results. But large samples do support more in depth 
and effective application of statistical techniques to com-
pensate for known confounding factors than is possible 
with small studies.

Although analyses of observational data should gener-
ally be considered exploratory rather than definitive, they 
are nonetheless often a relatively inexpensive and quick 
way to evaluate the plausibility of hypotheses and build 
support for subsequent experimental studies. Done well, 
retrospective analyses can provide good estimates of treat-
ment effect3–7 although they tend to underestimate harms 
associated with interventions.8 Excellent guidelines have 
been published to encourage uniform and complete report-
ing of observational studies, including full acknowledge-
ment of limitations.9,10

CASE SERIES
A case series—a description of what happened to a series of 
patients with a particular diagnosis, perhaps treated with a 
particular strategy—is certainly an improvement over anec-
dotal experience and case reports because compiled data 
from a group are less likely to be idiosyncratic than results 
from 1 or a few individuals. There are many examples in 
which case series, and even case reports, have provided crit-
ical advances.9 Malignant hyperthermia, for example, was 
initially reported as a case series and, because it is so rare, 
has never been subject to randomized trial.10,11

In a typical case series, physicians might report that 79 of 
their patients given a particular treatment for heart failure 
had a median survival of 37 months. If you are comparable 
to their patients and get exactly the same treatment, it is 

Case-control and cohort studies are invaluable research tools and provide the strongest fea-
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prospective data collection. Observational studies are subject to errors attributable to selec-
tion bias, confounding, measurement bias, and reverse causation—in addition to errors of 
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remain additional potential sources of error, often of unknown magnitude and clinical impact. 
Causality—the most clinically useful relation between exposure and outcome—can rarely be 
definitively determined from observational studies because intentional, controlled manipu-
lations of exposures are not involved. In this article, we review several types of observa-
tional clinical research: case series, comparative case-control and cohort studies, and hybrid 
designs in which case-control analyses are performed on selected members of cohorts. We 
also discuss the analytic issues that arise when groups to be compared in an observational 
study, such as patients receiving different therapies, are not comparable in other respects.  
(Anesth Analg 2015;121:1043–51)

Clinical Research Methodology 2: Observational 
Clinical Research
Daniel I. Sessler, MD,* and Peter B. Imrey, PhD†

From the *Department of Outcomes Research, Anesthesiology Institute, 
Cleveland Clinic, Cleveland, Ohio; and †Department of Quantitative Health 
Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
Accepted for publication May 1, 2015.
Funding: Supported by internal sources.
The authors declare no conflicts of interest.
Address correspondence to Daniel I. Sessler, MD, Department of Outcomes 
Research, Anesthesiology Institute, Cleveland Clinic, 9500 Euclid Ave./P77, 
Cleveland, OH 44195.  Address e-mail to DS@OR.org; website: www.OR.org.

REVIEW ARTICLEE



Copyright © 2015 International Anesthesia Research Society. Unauthorized reproduction of this article is prohibited.
1044   www.anesthesia-analgesia.org ANESTHESIA & ANALGESIA

E REVIEW ARTICLE

reasonable to expect to have about a 50-50 chance of living 
more or less than 37 months.

The trouble is that this result, although useful for con-
sidering the prognosis of an individual already committed 
to the particular treatment, offers no comparative context. 
Median survival for comparable patients is not all that we 
want to know; what we really need to understand is whether 
this survival (or any other outcome) is better or worse with 
this treatment than with alternatives, and that is where the 
logic gets tricky. The danger is that in assessing alternative 
treatment plans, the results of a case series of a new treat-
ment are almost always implicitly or explicitly compared 
with previous results, that is, to a “historical control.”

Historically controlled studies tend to falsely generate 
a conclusion that new treatment or local management is 
superior because the comparative effects of the treatment 
tend to get mixed up with, or confounded by, other time-
dependent changes. For instance, recent patients may have 
been diagnosed earlier in their disease courses than his-
torical patients because of the improvement in diagnostic 
imaging or other technology. Patients diagnosed earlier—
the recent ones—would thus be expected to survive lon-
ger from the time of diagnoses whether or not the new 
treatment they receive is an improvement. This problem 
is known as “lead time” bias in the context of studies of 
medical screening. Because there is no way to recover when 
diagnoses would have occurred had the historical reference 
subjects been seen under present conditions, it is difficult 
or impossible to retroactively correct for this problem. 
Alternatively, therapy for some disease-related complica-
tions may have improved over time. Improved treatment 
of these complications, rather than the new therapy, may 
have improved survival.

Conclusions based on historical comparisons are, star-
tlingly often shown to be misleading, usually exaggerated, 
in subsequent randomized trials.12,13 Comparisons to histor-
ical controls are generally invalid because: (1) the compari-
son patients differ from those in the case series in important 
ways that have not been accounted for and may even be 
unknown (confounding); and/or (2) outcome measurement 
accuracy differs nonrandomly (measurement bias).

That said, population-based observational research—
following a group of subjects over time—is the proper tool 
for determining the natural history and prognosis of vari-
ous diseases, and the conditions (i.e., “risk factors”) that 
frequently precede their development. For example, obser-
vational studies would be used to evaluate weight gain or 
development of hypertension over time in a population. We 
will return later to observational designs involving more 
rigorous interperiod comparisons than the historically con-
trolled case series. But it is essential to avoid unwarranted 
causal inference such as the conclusion that health will be 
improved by preventing obesity or hypertension—which 
may or may not prove to be the case.

CASE-CONTROL STUDIES
Case-control studies are usually the best approach—and 
often the only practical one—to study rare diseases or out-
comes. Consider unanticipated tracheal reintubation in the 
postanesthesia care unit. This is a potentially severe com-
plication that is often used as a quality metric; fortunately, 

reintubations are also rare—too rare, in fact—to practically 
evaluate in prospective trials.

An alternative approach is to find patients who required 
reintubation in the postanesthesia care unit and compare 
them to a similar group of patients who did not. Investigators 
can then look backward in time and determine, for exam-
ple, which patients in each group had their neuromuscular 
block reversed. If patients who required reintubation were 
significantly less likely to have been given reversal agents, 
one can conclude that there is an association between inad-
equate block reversal and emergent reintubation. The basic 
approach to such case-control studies is shown in Figure 1.

For case-control studies to be valid, the case and control 
groups must be chosen or statistically adjusted to be compa-
rable with respect to potential confounding factors, and the 
assessment of exposures and potential confounding factors 
must be equally complete and accurate for both. A danger 
with clinical records is that important potential confound-
ers may not have been evaluated or may have been inaccu-
rately recorded. They may also be nonrandomly erroneous: 
for example, patients who have complications may have a 
more complete list of preexisting conditions. A further dan-
ger is that important confounding factors may be unknown 
and thus not even considered by investigators.

But because investigators must look back in time—
sometimes quite far back—it is difficult to determine the 
extent to which the groups might meaningfully differ. 
Equivalent exposure assessment for both groups may also 
be hard to ensure. For example, data about cases often must 
be obtained directly from patients or their families, whose 
memories may be stimulated by the symptoms, diagnostic 
processes, and concerns about the disease. In contrast, the 
memories of and about control patients may not undergo 
such reinforcement. The tendency for stronger memories in 
1 group to distort exposure comparisons between case and 
control subjects is known as recall bias.

It is possible to conduct case-control studies within well-
defined cohorts and thus ensure that both cases and con-
trols represent the same defined population. For instance, 
disease registries that centrally record all cases within a 
defined geographic area allow investigators to conduct 

Figure 1. The cardinal feature of case-control studies is that inves-
tigators start with a group of people who have already experienced 
the outcome-of-interest (reintubation) and an appropriate group of 
controls who have not. They then look backward in time to compare 
the frequency and the extent of exposures (in this case, reversal 
of muscle relaxation) between the groups. Case-control studies are 
most often retrospective, in that investigators collect the data about 
exposure, often many different exposures, backward in time, after 
the cases have occurred.
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“population-based” studies with cases drawn from the reg-
istry and controls drawn from the general population in the 
area covered by the registry.

“Case-cohort” and “nested case-control” studies describe 
hybrid designs combining elements of conventional cohort 
and case-control research. In each, an underlying cohort 
study defines the context within which a case-control study 
is conducted. In case-cohort studies, the exposures of cases 
that develop within the course of the cohort study are com-
pared with those of a random sample of cohort members, 
which may be selected before disease develops. In nested 
case-control studies, controls are matched to each case indi-
vidually by random selection from other cohort members 
observed and remaining disease free for at least as long as 
the case. This matches the observation times and data col-
lection periods of controls with those of the cases.

Case-cohort and nested case-control designs are more 
assuredly valid than conventional case-control or retro-
spective cohort studies. But they require surveillance of a 
cohort to obtain the cases and controls and thus may take 
longer and inevitably cost more than fully retrospective 
approaches. Savings nonetheless accrue because exposure 
and outcome data need not be ascertained for all cohort 
members. For instance, if exposures are genetic or otherwise 
available from preserved biosamples, only those from cases 
and selected controls, who together may constitute only a 
small subset of the cohort, will require analysis.

COHORT STUDIES
Cohort studies differ from case-control studies in that they 
look forward in time from exposure to disease/outcome. As 
above, the term “exposure” is used broadly and can refer to 
a patient’s genetics, environmental exposure, or treatment. 
The term “disease” is equally broad and includes complica-
tions, progression, and death. The general logic of cohort 
studies is shown in Figure 2.

In cohort studies, investigators start with groups dif-
fering in their exposures or levels of exposure and look 
forward in time, comparing subsequent disease incidence 
between these groups. But that does not mean that data 
collection needs to be prospective. For example, investiga-
tors can “look forward” from exposure to disease within 
the confines of an existing database. This latter approach 
is termed a “retrospective cohort study” because the 
research is conducted after the period for which disease 

development is to be compared. Usually, and prefer-
ably, the exposure groups are subsets of a single natural 
cohort although on occasion they may arise from different 
sources.

Cohort studies can also start after exposure but before 
development of disease, an approach termed an “ambidi-
rectional cohort study.” Ambidirectional studies are used 
in public health crises when the exposure was unexpected 
but when its effects on health are potentially important 
(e.g., a leaking nuclear power facility, chemical plant 
explosion, or widespread exposure to contaminated air or 
water). Exposed subjects are then followed prospectively 
for ill effects, even though the exposure occurred before 
the study started. Studies of smoking, air pollution, diet, 
blood pressure, etc. are also considered ambidirectional 
because the (ongoing) exposure is present at the time the 
study starts.

Finally, cohort studies can be completely prospective. 
Some are observational, which is appropriate when expo-
sure cannot be controlled by the investigators (i.e., employ-
ment in a chemical plant, a genetic factor, or a lifestyle factor 
or maintenance medication that cannot ethically or practi-
cally be manipulated for a sufficient time frame). But a com-
pletely prospective cohort approach, in principle, allows the 
investigators to take an experimental approach by control-
ling the exposure. This can vastly increase the validity of 
the study.

A special case of a prospective experimental cohort study 
is a “randomized clinical trial,” in which the exposure (in 
this case, a preventive strategy or therapeutic treatment for 
a disease) is randomly assigned. The 3 “flavors” of cohort 
studies are shown in Figure 3. (Also, see the third article in 
this series that focuses on randomized trials.)

Figure 2. The cardinal feature of cohort studies is that investigators 
start with groups of people who differ in their exposure and analyti-
cally look forward in time to compare the development of disease 
between these groups.

Figure 3. In cohort studies, investigators start with exposure and 
look forward in time, comparing development or progression of dis-
ease between groups differing in their exposures. In a retrospective 
cohort study, investigators assemble the groups and make these 
comparisons within the confines of existing records. An ambidirec-
tional approach is used when the exposure has occurred (i.e., a 
chemical plant exploding) or is ongoing (i.e., cholesterol concentra-
tion or diet), and its effects on health are potentially important and 
thus worth following. Prospective cohort studies, in which investiga-
tors collect their data as the exposures and subsequent disease 
events occur, can be especially powerful because this approach may 
allow investigators to control measurements and manipulate the 
exposure, which vastly increases the study reliability. A special case 
of a prospective cohort study is a randomized clinical trial, in which 
exposure (treatment) is randomly assigned.
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INTERPERIOD COMPARATIVE DESIGNS
“Before-and-after” studies, which compare outcomes of 
a case series after initiation of an intervention with those 
of historical controls in an immediately preceding period, 
use temporally proximal historical controls who are also 
highly similar in other respects to those coming after and 
thus exposed to the intervention. Such studies often allow 
planned, uniform measurements throughout the full obser-
vation period. For these reasons, they are clearly less vul-
nerable to error from extraneous influences than more 
loosely historically controlled case series. Before-and-after 
studies are frequently used in health services research 
because implementations of complex practice changes, such 
as electronic records or multispecialty enhanced recovery 
pathways, tend to occur at discrete points in time and are 
essentially irreversible.

Observational analogs of experimental crossover 
designs and “n-of-1” clinical studies,14,15 in which individu-
als or groups are exposed to planned sequences of 1 or more 
experimental and control conditions in discrete periods, are 
more resistant to errors than simple before-and-after com-
parisons. Such designs are often called “quasiexperimental” 
and are most straightforward for studies of exposures with 
short-term biological effects and of people whose health 
conditions are chronic and relatively stable; more restric-
tive assumptions and complex analyses are required when 
responses vary systematically among periods because of 
disease progression or persistent effects of therapies in pre-
vious periods. For example, at the population level, cardiac 
arrest incidence rates might be compared among periods of 
high and low air pollution, as determined by a relevant air 
quality metric.

Interrupted time series studies involve measurements 
over multiple time periods, preferably a considerable 
number, bracketing an intervention, or other exposure of 
interest. This elaboration of a conventional before-and-
after design allows observation of trends coincident with 
the intervention. The technique allows differentiation of a 
response to intervention from stable secular trends caused 
by extraneous factors, such as steady increases or decreases 
or perhaps cyclical effects because of seasonal variation. 
Close temporal association between exposure and outcome, 
in a long series of stable or predictably changing outcomes, 
can compellingly suggest causality in the context of obser-
vational research.

Elaborations of this design, where possible, involve 
observations of similar time series across multiple groups 
for which the timing of the exposure has varied. Controlled 
interrupted time series studies include a second series of 
observations, at the same times as the first, in a group that 
remains unexposed throughout the study. Stepped wedge 
designs observe multiple time series at similar points, from 
groups initially exposed at different times in the sequence of 
observations. The additional time series improve investiga-
tors’ ability to distinguish the effects of exposure from those 
of extraneous, irregular influences on the outcome.

Similarly, in what are known as “case-crossover stud-
ies” at the individual patient level, measures of chronic pain 
might be compared between periods in which patients used 
different analgesics or doses; childhood accidents might be 

associated with amount of sleep on the preceding night; and 
episodes of bleeding and thrombosis for patients on ven-
tricular assist devices might be compared across periods of 
differing preventive medication regimens.

BIAS IN CASE-CONTROL, COHORT, AND 
INTERPERIOD COMPARISON STUDIES
The “Hawthorne effect,” initially identified in the 1940s,16 
is a subtle type of bias favoring the intervention in before-
and-after studies. It refers to the fact that simply being in 
a study, and the associated attention from investigators, 
alters responses of participants. For example, patients in 
a placebo-controlled clinical trial of Ginkgo biloba for treat-
ment of mild-moderate dementia exhibited more improve-
ment when intensively monitored than with less intense 
evaluation.17

Two difficulties with before-and-after studies and more 
elaborate interperiod comparisons are that (1) the presence 
of the exposure may influence the measurements of the 
outcome unless the measurement process is under tight 
control of the researcher throughout the study period; and  
(2) medical improvements, or secular trends concurrent 
with but irrelevant to the intervention, may make an interven-
tion appear more (or less) effective than it really is. The sec-
ond of these can be greatly mitigated by multiple series and 
multiperiod studies because such studies can effectively 
exclude many simple alternative explanations for data, 
leaving causality as the sole remaining plausible scenario.

Combined concerns about concurrent time-dependent 
improvements, the Hawthorne effect, and the potential for 
measurement biases, make simple before-and-after stud-
ies an especially weak design. Where feasible, multiperiod 
crossover studies, including stepped wedge18 and inter-
rupted time series19,20 comparisons, are generally superior 
alternatives and even more so when they include a parallel 
control series.

Case-control studies look back in time from disease/
outcome to exposure, whereas cohort studies look forward 
in time from exposure to disease/outcome. A consequence 
is that selection and measurement biases apply differently. 
In case-control studies, selection bias applies to selection of 
the case and control groups. To the extent that the 2 groups 
differ on variables extraneous to the focus of the study, the 
effects of such variables may contaminate inferences about 
the exposure(s) of interest, compromising the validity of the 
conclusions.

The opposite is true for cohort studies. There, selection 
bias applies to selection of the exposed and unexposed 
groups—which need to be otherwise comparable. An 
example from anesthesia is that patients who get neuraxial 
anesthesia usually differ from those who do not; a simple 
comparison of outcomes between patients who do and do 
not have epidural or spinal anesthesia will thus be con-
founded by such differences to the extent that they influ-
ence the outcomes of interest.

Such issues emerged in the controversy over risks and 
benefits of hormone replacement therapy for postmeno-
pausal women. Hormone replacement therapy users 
tend to be more affluent, better educated, have greater 
access to care and treatment of comorbidities, and tend to  
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be more medically compliant than nonusers.21 To the extent 
that these factors predispose to better health outcomes, 
direct observational comparisons between users and nonus-
ers randomly sampled from the population were potentially 
biased in favor of hormone replacement therapy.

Simple comparisons of such an outcome in cohort stud-
ies would thus compare groups of women collectively at dif-
ferent risk levels. Case-control studies would similarly find 
fewer using hormone replacement among cases than controls 
because more affluent and educated women with better medi-
cal care would be less frequent among the case group, which 
would thus be relatively more populated with women less 
likely to have access to and use hormone replacement therapy. 
Thus, confounding in both types of studies could arise from 
failure to compensate from the selective manner in which hor-
mone replacement therapy becomes available to, and is used 
by, perimenopausal and postmenopausal women.

For case-control studies, measurement bias applies pri-
marily to estimating exposure, which might be genetic, 
environmental, or a treatment. Again, the opposite is true 
for cohort studies; there, measurement bias applies pri-
marily to assessing disease or outcome. For instance, good 
clinical practice typically requires greater surveillance for, 
and higher sensitivity to, disease signs in patients known 
or suspected to be at increased risk, but such differences in 
relation to a suspect exposure produce ascertainment bias 
in cohort studies. Figure 4 shows the 2 types of studies and 
where selection and measurement bias are of most concern 
in each.

Case-control and cohort studies are both important 
research tools. Case-control studies usually involve retro-
spective data collection although a case-cohort or nested 
case-control analysis is sometimes planned within a ran-
domized trial. Cohort studies can involve retrospective, 
ambidirectional, or prospective data collection. More com-
plex observational studies may combine features of both 
the case-control and cohort approaches. Comparisons 
between observational studies and subsequent large ran-
domized trials suggest that the observational studies usu-
ally correctly determine the direction of the effect being 
evaluated but often overestimate the magnitude of the 
treatment effect.6

LINKS BETWEEN CASE-CONTROL AND COHORT 
STUDIES
Although cohort and case-control studies differ substan-
tially, they share an identical basic purpose: to shed light 
on how current status and exposures, such as medical treat-
ments, predict and affect future outcomes.

It is not intuitively obvious that comparisons of statistics 
about past exposures in case-control studies can be used to 
describe the statistical patterns of evolution of disease out-
comes in current and future patients. In fact, precise math-
ematical reasoning, including a bit of algebraic jujitsu, is 
required, and this reasoning does not apply to arbitrarily 
assembled case and control groups. For the logic to work, 
both cases and controls must be sampled from a com-
mon underlying cohort wherein the relevant pathogenic 
processes are generally stable. In other words, the control 
sample in a case-control study must be representative of the 
larger group of all those who, had they developed the dis-
ease under study, would have been detected and included 
in the case group. In practice, it is often difficult to establish 
such groups, especially when studying rare diseases and 
potential links to distant occupational and environmental 
exposures.

Consider, for example, a case-control study in which 
hospitalized patients with 1 disease are compared with sim-
ilarly hospitalized controls with other diagnoses. The dif-
ficulty with this approach is that hospitalized patients are 
special by virtue of their need for hospitalization and thus 
may differ greatly from the cases in characteristics and past 
exposures related to other causes of hospitalization. So the 
selection processes that result in hospitalization for various 
conditions can introduce serious confounding that is often 
hard to anticipate—and even harder to eradicate—a prob-
lem known as Berkson bias.

With hindsight, we can well appreciate an example 
of this in 2 seminal 1950s studies of smoking and health 
conducted in England by Doll and Hill, who were both 
subsequently knighted for their contributions. One was a 
prospective study of smoking and mortality from various 
causes in a cohort of physicians.21 The other was a case-con-
trol study of smoking and lung cancer incidence, in which 
hospitalized lung cancer patients were compared with con-
trols selected from inpatients of the same hospitals with 
other diagnoses.22 Because lung cancer was almost always 
fatal, and there is no particular reason to expect its rela-
tion with smoking to differ in physicians from its relation 
with smoking in others, one might expect estimates of the 
smoker-to-nonsmoker lung cancer incidence ratio from the 
hospital-based case-control study and the smoker-to-non-
smoker lung cancer mortality ratio from the prospectively 
studied physician cohort to be similar.

However, the hospital-based case-control study inci-
dence ratios for categories of cigarette smoking at levels 
above half-a-pack per day were only half the corresponding 
mortality ratios observed in the physician cohort, whereas 
the incidence and mortality ratios for less frequent smok-
ers were similar. Subsequent research has clearly supported 
the ratios found from the physician cohort, and it is now 
accepted that the case-control study substantially underesti-
mated the strength of the smoking and lung cancer linkage.

Figure 4. In case-control studies (left), selection bias applies to 
selection of the case and control groups, and measurement bias 
applies to determination of exposure. In cohort studies (right), selec-
tion bias applies to selection of exposed and unexposed groups, and 
measurement bias applies to determination of disease or outcome.
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We know now what was not known then, and why such 
a discrepancy between the results of these studies at higher 
smoking levels was virtually inevitable. Cigarette smok-
ing causes many diseases, including myocardial infarc-
tions and ischemic stroke; collectively, cardiovascular and 
cerebrovascular diseases linked to smoking were then, 
and are now, much more common than lung cancer. In the 
1950s, heart attack patients were typically hospitalized for 
3 weeks. Hence, the British hospitals from which controls 
were selected in the early 1950s were likely filled with heart 
attack survivors, whose past smoking exposures had con-
tributed to pathogenesis of their heart disease and thus 
selected them to be available as controls.

Control patients in this study were thus bound to over-
estimate the smoking levels of those without lung cancer in 
the population, leading to underestimation of the disparity 
between smoking levels of cases and controls and conse-
quently of the inferred disparities between lung cancer inci-
dences of nonsmokers and smokers—but only at smoking 
levels sufficient to noticeably affect heart attack risk. Thus, 
with current knowledge, it is unsurprising that the effect was 
not seen in Doll and Hill’s lowest smoking dose category, 
where effects of smoking on other diseases were weakest.

CONTROLLING CONFOUNDING AND COMPLEXITY 
IN OBSERVATIONAL STUDIES
Observational clinical researchers attempt to isolate the 
causal effects of 1 factor from the biological and statistical 
influences of others. Fortunately, human environments and 
behaviors are not subject to the sorts of manipulations and 
controls that are routine for laboratory samples and animal 
models. But a consequence is that confounding is always 
possible. Specific features of study design and analysis are 
thus used to reduce the risk of confounding errors by foster-
ing like-with-like comparisons. These methods are power-
ful but imperfect.

Matching methods assemble the groups to be compared 
in a manner that forces them to be similarly constituted with 
respect to characteristics that otherwise might confound the 
comparisons of greatest interest. Group compositions might 
be harmonized as a whole in what is known as “frequency 
matching.” Alternatively, and more aggressively, individu-
als in each group might be linked to specific similar indi-
viduals in the other group(s) in “matched set” studies.

Analytical strategies strive for similarly equitable com-
parisons by restructuring how observations are organized 
and weighted when comparisons are made. Stratification 
methods such as classical direct rate adjustment subdivide 
the data into strata whose members are similar with respect 
to confounding variables, obtain like-with-like subcompari-
sons between the relevant groups within each of these strata, 
and then reassemble these subcomparisons into an overall 
summary of group differences. Because the subcomparisons 
are protected against confounding, their aggregation is also. 
For example, Florida’s mortality rate is higher than Alaska’s 
because Floridians tend to be older. But we would be foolish 
to move from 1 state to the other to live longer because mor-
talities for Floridians and Alaskans of comparable ages are 
similar. By stratifying each state’s population and averaging 
the differences in the resulting age-specific mortalities, we 

obtain a clearer picture of the effect of state of residence, 
separated from the known effect of age. But unless a very 
large sample is available, it is difficult with this method to 
simultaneously protect against confounding by more than a 
few variables, and it only protects against known confound-
ers for which reliable data are available.

“Multivariable modeling” refers to more comprehensive 
and sophisticated statistical multiple regression methods 
for simultaneously controlling multiple confounders and 
potentially also evaluating effect modification. One use 
of such models is to develop an overall propensity score 
to summarize the multiple characteristics correlated with 
exposure. The score may then be used to develop individu-
ally matched or stratified comparisons, more or less as just 
described, in relatively simple statistical analyses as if the 
propensity score itself had been a single prognostic char-
acteristic known at the study’s outset. Thus, the modeling 
effort is directed toward accounting for preceding correlates 
of the exposure and is conducted entirely without reference 
to clinical outcomes. When the exposure is a treatment, 
propensity modeling then attempts to represent physician 
behavior, about which much may be known a priori and 
used to inform the modeling process.

Most multivariable modeling, however, is directed at 
exposure-disease linkages and attempting the more difficult 
task of representing complex biology and resulting disease 
behaviors. These models attempt to achieve the benefits of 
finely stratified analyses by mathematically incorporating 
the relations between pairs of variables, assuming others 
are held constant, and then correcting for differences in 
groups being compared that may generate confounding 
by mathematical adjustments of outcomes. Essentially, this 
involves sliding the outcome distributions for each group 
along scales corresponding to individually predictive vari-
ables, until averages of all such variables are closely aligned 
across all groups. Direct multivariable modeling and pro-
pensity matching are both useful, and which is best for a 
given analysis depends on the questions being asked, the 
type of data, and the characteristics of the data source.23

A basic approach to adjusting for confounding is com-
mon to the various types of regression analysis used for 
modeling continuous measurements, dichotomous out-
comes, rates of recurrent disease episodes, and survival 
times. At the core of most statistical modeling is an index 
of patient factors known technically as a “linear predictor” 
and consisting of a weighted sum of patient variables a1x1 
+ a2x2 + ...+ akxk. The xi are numbers, or numerical codes 
for values of ordinal or qualitative patient factors, and the 
ai are weights intended to reflect the statistical relations of 
these variables to the outcome. When enough data are avail-
able and relations in nature are simple, confounding can be 
statistically removed simply by adding 1 or more terms ajxj 
representing confounders into the linear predictor. This 
approach can, in principle, remove confounding for even a 
large set of variables.

Effect modification can also be represented in regression 
analysis by including interaction terms in the linear predic-
tor for which the x portion is constructed as the product 
of numerical representations of the exposure variable and 
variables that may modify its effect. When interaction terms 
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are statistically significant, exposure effects should usually 
be described separately for different values or ranges of the 
effect modifier.

For instance if, in an observational study, the vari-
able x1 is respectively 1 or 0 for patients receiving drug 
A or drug B, and physicians tend to somewhat preferen-
tially prescribe drug A for older and drug B for younger 
patients—and the average outcome of treatment depends 
linearly on age—then confounding of the treatment effect 
by age might be removed by simply including a multiplier 
of patient age in the linear predictor or including separate 
variables taking values 0 or 1 to indicate membership in 
each of several age strata. Effect modification can also be 
investigated by including an additional variable, say x6, 
constructed as the product of x1 with age: 1 × age = age 
for patients receiving drug A and 0 × age = 0 for patients 
receiving drug B.

Occam’s Razor, attributed to William of Occam (1285-c. 
1347) and sometimes known as the law of parsimony or the 
KISS (keep it simple stupid) principle, is the practical, and to 
some extent aesthetic, philosophy of choosing, among com-
peting explanations, the simpler over the more complex. 

Occam’s Razor requires hypotheses involving effect 
modification to be held somewhat at arms length until 
essentially required by data that cannot be explained more 
simply. Keeping this approach in mind when conducting 
multivariable modeling is wise because a search for inter-
actions among many variables involves large numbers of 
combinations, promoting false-positive results.

The apparent simplicity of these powerful methods can 
be deceptive, especially when the methods are applied in 
conjunction with automatic or semiautomatic methods for 
variable selection, which itself is among the most difficult 
problems in statistical methodology. Specifically:

1. Because confounding is a consequence of sample com-
position regardless of statistical significance, methods 
that select variables solely by statistical significance 
criteria, such as significance of unadjusted associa-
tions with either outcome or exposure or by forward, 
backward, or stepwise variable selection, may fail 
to recognize and adjust for important confounding. 
Thus, the common practice of using statistical signifi-
cance to determine which variables to adjust for in 
comparisons of outcomes in an observational study 
is ad hoc rather than justified by statistical principles.

2. Sliding variables along their scales individually to 
achieve comparability of averages across groups, as 
is done in the basic modeling approach to confounder 
adjustment described above, may implicitly assume 
biologically impossible combinations of variables. In 
such cases, adjustment models effectively extrapolate 
beyond the range of the data.

3. A characteristic that cannot itself be measured 
directly is termed “latent.” Pain, for instance, is latent 
but can be assessed by its effects on multiple behav-
iors and measurement instruments such as, for young 
children, the Faces Pain Scale (Faces, Legs, Activity, 
Cry, Consolability)24 and numerical visual analog 
scale.25 When such multiple measures of the same 
latent entity are available for analysis, inclusion of 

alternative highly correlated (technically known as 
“collinear”) measurements in the same linear pre-
dictor may conceal important relations. This occurs 
because the test of each variable individually treats 
the counterpart variable as a potential confounder 
and, by doing so, largely adjusts its own effects out 
of the test.

4. Intermediate variables in a causal pathway between 
an exposure and outcome, technically known as 
“mediators,” are not confounders. Treating them as if 
they were, by matching or inclusion in a linear pre-
dictor, conceals such portion of the exposure’s causal 
effect that acts through the mediator. For example, 
anesthesia handovers are associated with, and may 
be causal for, major in-hospitality morbidity or mor-
tality, potentially because of errors resulting from 
the loss of critical information during the transfer.1 
If this hypothesis is correct, then if analyses of the 
association between handovers and outcomes were 
somehow adjusted for loss of critical information, the 
adjustment would greatly reduce or even eliminate 
the association between handoffs and outcomes.

5. Controlling the relations of 2 variables for a mutual 
consequence, known as a “collider,” or for a collider’s 
near relative, can distort the relation unpredictably 
and yield paradoxical results. To see this, consider 
the classic example of the relation between 2 causes of 
wet lawns, rain, and automated lawn sprinkling only 
on Mondays, Wednesdays, and Fridays. If the asso-
ciation is examined after controlling for lawn status 
by fixing the lawn as wet, then absence of either cause 
fully determines—indeed, logically implies—that the 
other must be present. But of course this is nonsense 
because rain and automatic sprinkling are statistically 
independent, despite the conviction of many home-
owners that watering brings on rain.

6. Accurate determination of timing, and hence sequenc-
ing of exposures, outcomes, and possible mediators, 
confounders, and effect modifiers may be difficult 
in observational studies of chronic diseases and/
or exposures, leading to inadvertent adjustment for 
mediators or consequences rather than confounders.

7. Adjustments for confounding in statistical models 
are themselves influenced by random variation of the 
estimated relations between the outcome and the con-
founder, random variation which can be substantial 
in modestly sized studies.

These issues clarify why (1) a hands-on statistical approach 
is generally preferable to “by the numbers” handling of con-
founder control in observational studies; (2) data from some 
such studies may not have a unique coherent interpretation, 
even when large amounts of data are available; and (3) data 
from controlled clinical experiments are preferable to obser-
vational data when obtainable and affordable.

STROBE REPORTING GUIDELINES
Various checklists and guidelines have been proposed to 
enhance completeness and consistency of reporting in obser-
vational studies. In practice, the reporting guidelines also 
serve as guidelines for study conduct because many required 
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elements will only be available if designed into the original 
protocol. The best known and most commonly used check-
list is from the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) statement.26

The STROBE checklist includes 22 items, half-a-dozen of 
which have subitems. Among these, perhaps the most criti-
cal are (1) specific objectives and hypotheses; (2) eligibility 
criteria, sources, and methods of participant selection and 
sample size rationale; (3) definition of all outcomes, expo-
sure, predictors, potential confounders, and effect modifiers; 
(4) data sources; (5) methods of statistical analysis, includ-
ing matching, adjustments for confounding, subgroups, and 
interactions; (6) relevant participant characteristics; and (7) 
results including both unadjusted and (if used) adjusted/
matched outcomes with 95% confidence intervals.

CONCLUSIONS
Large registries have revolutionized retrospective perioper-
ative studies by giving investigators access to large amounts 
of high-quality data. High-density databases including 
tens-of-thousands to tens-of-millions of patients, combined 
with sophisticated statistical techniques, have markedly 
improved the reliability of retrospective studies.

Case series are often explicitly or implicitly compared 
with historical controls, an approach that is subject to 
numerous biases. Retrospective case-control studies may be 
the only way to evaluate rare conditions, and retrospective 
cohort studies are a quick and inexpensive way to evalu-
ate hypotheses. Long-running prospective cohort studies 
accumulate invaluable data and biosamples that inform on 
the natural history of disease and provide a basis for subse-
quent case-cohort and nested case-control studies.

Done properly, case-control and cohort studies are 
powerful research tools and may provide the strongest 
feasible research designs for addressing some questions. 
Case-control studies usually involve retrospective data 
collection. Cohort studies can involve retrospective, ambi-
directional, or prospective data collection. More complex 
observational studies may combine features of both the 
case-control and cohort approaches.

However, observational studies are subject to errors 
attributable to selection bias, confounding, measurement 
bias, and reverse causation—in addition to errors of chance. 
Confounding can be statistically controlled to the extent 
that potential factors are known and accurately measured 
but, for the reasons enumerated above, adjustment may not 
be straightforward in practice, and bias and unknown con-
founders remain additional potential sources of error, often 
of unknown magnitude and clinical impact. Causality—the 
most clinically useful outcome—can rarely be definitively 
determined from observational data, because intentional, 
controlled manipulations of exposures are not involved, 
and clear exclusion of competing noncausal interpretations 
is logically impossible and exceptionally difficult, even to a 
practical standard of assuaging reasonable doubt.

Experimentation, however, provides more powerful 
tools for preventing clinical research errors. Randomized 
assignment of treatment prevents reverse causation 
errors and selection bias and, in sufficiently large studies, 
strongly protects against confounding. Blinding minimizes 

measurement bias. The third article in this series discusses 
randomized clinical trials. E
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