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Models and Repeated-Measures Designs
Edward J. Mascha, PhD,*† and Daniel I. Sessler, MD†

Equivalence and noninferiority designs are useful when the superiority of one intervention over
another is neither expected nor required. Equivalence trials test whether a difference between
groups falls within a prespecified equivalence region, whereas noninferiority trials test whether
a preferred intervention is either better or at least not worse than the comparator, with worse
being defined a priori. Special designs and analyses are needed because neither of these
conclusions can be reached from a nonsignificant test for superiority. Using the data from a
companion article, we demonstrate analyses of basic equivalence and noninferiority designs,
along with more complex model-based methods. We first give an overview of methods for design
and analysis of data from superiority, equivalence, and noninferiority trials, including how to
analyze each type of design using linear regression models. We then show how the analogous
hypotheses can be tested in a repeated-measures setting in which there are multiple outcomes
per subject. We especially address interactions between the repeated factor, usually time, and
treatment. Although we focus on the analysis of continuous outcomes, extensions to other data
types as well as sample size consideration are discussed. (Anesth Analg 2011;112:678–87)

Equivalence and noninferiority designs are gaining
popularity in medical research, and for good reason.
In an era when multiple successful treatments are

available for many conditions and diseases, investigators
often compare a new treatment to an existing one and ask
whether the new treatment is at least as effective.1,2 For
example, it is now rarely considered ethical to compare a
novel treatment with placebo when effective treatments are
already available. However, it is often of considerable
interest to evaluate whether a new treatment is at least as
effective as an existing one, especially if the novel treatment
is less expensive, easier to use, or causes fewer side effects.
In these “comparative efficacy” or “active-comparator”
trials, the hypothesis is that 2 treatments, perhaps 2 anes-
thetics, have comparable effect.

Claims of comparability or equivalence are not justified
from a nonsignificant test for superiority, because the
negative result may simply result from a lack of power
(Type II error) in the presence of a truly nontrivial popu-
lation effect. Rather, an equivalence design is needed, with
the null hypothesis being that the difference between
means or proportions is outside of an a priori specified
equivalence region.3,4 If the observed confidence interval
(CI) lies within the a priori region, the null hypothesis is
rejected, and equivalence claimed. In addition to CIs,
statistical tests can be used to assess whether the true
difference lies within the equivalence region.

Noninferiority designs are useful when the goal is to
demonstrate that a preferred treatment is “at least as good
as” or “not worse than” a competitor or standard treat-
ment.5,6 For example, if the preferred treatment is less
expensive or safer, it would suffice to show it was at least
not worse (and perhaps better) than a comparator on the
primary measure of efficacy. Also, cost effectiveness might
be assessed, for example, by simply requiring noninferior-
ity on either cost or effectiveness, and superiority on the
other.

Noninferiority was the approach taken in the design and
analysis of the companion paper in this issue of the journal
by Ruetzler et al.,7 in which researchers tested the hypoth-
esis that intraoperative distal esophageal (core) tempera-
tures are not !0.5°C lower (a priori specified noninferiority
!) during elective open abdominal surgery under general
anesthesia in patients warmed with a warm water sleeve on
one arm than with an upper body forced air cover. Patients
were randomly assigned to intraoperative warming with
either a circulating water sleeve (n " 37) or forced air (n "
34); intraoperative core temperature was measured every
15 minutes, beginning 15 minutes after intubation (Fig. 1).
Because temperatures were recorded over time, the Ruet-
zler et al. trial was a repeated-measures design. We use
these data to illustrate various approaches to noninferiority
as well as to equivalence and superiority analyses.
Throughout this article, we refer to Ruetzler et al. as “the
companion paper.”

Figure 2 depicts sample CIs and the appropriate infer-
ence for the 3 types of designs that we discuss. In a
superiority trial the null hypothesis of no difference is only
rejected if the observed CI for the treatment difference does
not overlap zero. Thus, result A in Figure 2 can claim
superiority of test treatment T to standard S, but result B
cannot. In a noninferiority trial, one treatment is deemed
“not worse” than the other only if the CI for the difference
lies above a prespecified noninferiority ! (thus, result C can
claim noninferiority, but result D cannot). Finally, in an
equivalence trial, 2 treatments are deemed “equivalent”
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only if the CI falls within the prespecified equivalence
region (result E can claim equivalence, but result F cannot).

Our goal is to review statistical approaches for equiva-
lence and noninferiority trials in various clinical settings;
for comparison, we also briefly present analysis of conven-
tional superiority trials. We first review basic methods for
design and analysis of each type of trial.8–12 We then
demonstrate how to analyze these designs in a linear regres-
sion model, including the repeated-measures setting in which
there are multiple outcomes per subject, as in the companion
paper. We give particular attention to assessing the interaction
between the repeated factor, which is usually elapsed time in
perioperative studies, and the intervention. Although we

focus on continuous outcomes, we briefly review noninferi-
ority and equivalence testing methods for some additional
outcome types. Sample size considerations for these designs
are also discussed. Throughout this article, we illustrate our
examples with data from the companion paper.

SUPERIORITY, EQUIVALENCE, AND
NONINFERIORITY DESIGNS—THE BASICS
Superiority Testing
For a study designed to assess superiority of one interven-
tion over another for a continuous outcome, the null and
alternative hypotheses are

H0: "E # "S $ 0 and H1: "E # "S % 0, (1)

where "E and "S are the population means for the respec-
tive experimental (E) and standard (S) interventions. As-
suming a normal distribution for the outcomes in each
group and equal variances, we use the Student t test to
assess superiority of E to S (or S to E). The test statistic is

Tsup $
"̂E # "̂S

!sp
2 #1/nE & 1/nS$

, (2)

where "̂E and "̂S are the observed means (and "̂E%"̂S

estimates the treatment effect), SP is the pooled estimate
of the common SD across groups, where SP $

"#nE # 1$sE
2 & #nS # 1$sS

2

nE & nS # 2 #1/ 2

, sE
2 and sS

2 are the observed vari-

ances (i.e., squared standard deviations) and nE and nS are the
sample sizes for the E and S interventions, respectively. The
denominator of Equation (2) is the estimated SD of "̂E

# "̂S, also called the estimated SE of the difference, or

SÊ"̂E # "̂S.
For a 2-sided test of superiority we compare the absolute

value of Tsup to a t distribution with nE % nS % 2 degrees of
freedom (df) at the '/2 level, where ' (“alpha”) is the a
priori specified significance level or type I error for the
study, typically 0.05. The 2-sided superiority P value is
twice the probability of observing a value greater than $Tsup$
if the null hypothesis were true. The null hypothesis is
rejected if the P value is smaller than the designated '.
Correspondingly, the null hypothesis is rejected if the
100(1–')% CI does not overlap zero.

Our primary outcome in the companion paper was core
temperature during surgery. The study was designed as a
noninferiority trial; but as an example, we first apply a test
of superiority to the dataset. Because the study had a
repeated-measures design, with temperature measured ev-
ery 15 minutes intraoperatively, the dataset has 1 row per
subject per repeated measurement, with variables site_id
(1 " Cleveland Clinic, 2 " Medical University of Vienna),
pt_id " patient ID, sleeve (1 " warming sleeve, 0 " forced
air), time_m (minutes after induction), esophtemp (esoph-
ageal temperature at specified time) and preoperative tem-
perature.

The full dataset is included in Appendix 1, which consists
of raw data from the companion paper7 (see Supplemental
Digital Content 1, http://links.lww.com/AA/A209) and is
available from the authors in Excel and tab-delimited formats.

Figure 1. Mean and SD of intraoperative temperature with warm
water sleeve and forced air from Ruetzler et al.7

Figure 2. Sample confidence intervals (CIs) and inference for trials
assessing superiority, noninferiority or equivalence of treatment T to
standard S. NI " noninferiority. Notice, for example, that CIs B and
C are identical, but that the permitted conclusions quite different
because the designs and hypotheses differ. Reprinted with permis-
sion and modifications from Mascha (2010).8
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We also supply SAS code (SAS statistical software, Cary, NC)
in Appendix 2 (see Supplemental Digital Content 2,
http://links.lww.com/AA/A210) to perform most of the
presented analyses.

To demonstrate this basic superiority analysis, we choose a
subject’s intraoperative temperature at 60 minutes after intu-
bation as the primary outcome. Any single-number patient
summary could similarly be used such as average intraopera-
tive temperature, maximum temperature, or final intraopera-
tive temperature. Summarizing the 60-minute temperatures
within group, we obtain mean (SD) of 35.96°C (0.43°C) and
35.87°C (0.47°C) for the circulating water and forced air
groups, respectively. The estimated pooled SD is thus SP $

"#37 # 1$0.432 & #34 # 1$0.472

37 & 34 # 2 #1/2

$ 0.45. Inserting SP along

with the observed means into Equation (2), we obtain the T
statistic for superiority as

Tsup $
35.96 # 35.87

!0.452 #1/37 & 1/34$
$

0.091

0.106
$ 0.86 (3)

Because $0.86$ " 0.86 is smaller than 1.99, the t distribution
at 1 %'/2 (or 0.975) with 37 & 34 % 2 " 69 df, we do not
reject the null hypothesis of no difference, with a corre-
sponding P value of 0.39 for superiority. Corresponding to
the nonsignificant test result, the 95% confidence interval
for the difference between means is (%0.12, 0.30), which
overlaps the null hypothesis value of zero difference. We
stress that lack of significance in a superiority analysis is no
basis for a claim of equivalence. It could simply reflect, for
example, lack of power due to a small sample size or high
variability in the outcome measured.

Equivalence
Special designs and statistical approaches are necessary
when the goal is to demonstrate that 2 interventions are
equivalent.9,13,14 We test the hypothesis that the difference
between interventions falls within an a priori specified
equivalence region ranging from %! (“%delta”) to &!
(“&delta”), outside of which the interventions are deemed
nonequivalent. In an equivalence design, the null hypoth-
esis is thus that the true difference is outside of the
equivalence region, as

H0: "E # "S ( # ! OR "E # "S ) & ! (4a)

versus the alternative, which we hope to conclude, that the
true difference is within the region, as

H1: "E # "S * # ! and "E # "S + & !. (4b)

Two 1-sided tests can be used to test whether the true
difference is above %! and also below &!.15 If both tests are
significant, the null is rejected and equivalence claimed.
More simply, though, equivalence is claimed at the given '
level if the CI for the difference falls within the equivalence
region.9 If the two 1-sided tests are both significant, the CI
for the difference will fall within the equivalence region,
and vice versa.

If equivalence had been hypothesized for the 2 interven-
tions in the companion paper, the equivalence region might
have been chosen as %0.5°C to &0.5°C for the difference in

temperature means. Supposing an a priori ' level of 0.025
had been specified for the study, then each of the lower and
upper boundaries of the equivalence region would be
tested at an ' of 0.025, and the 100(1 to 2')% " 95% CI for
the difference at 60 minutes would be (%0.12°C, &0.30°C),
as is reported above in the superiority testing; equivalence
would be claimed because the CI falls within (%0.5°C,
&0.5°C).

In an equivalence design, both tests must be significant
in order for equivalence to be claimed. Consequently, no
adjustment to the significance criterion for performing 2
tests (such as a Bonferroni correction) is needed or appro-
priate. Instead, each of the lower and upper tests uses the
same overall ' level. However, an interesting feature of an
equivalence design is that because each of the 2 boundaries
are tested at the overall ' level, the estimated interval is a
100(1 to 2')% CI, or in this example, 95%, because ' is 0.025
for each side.9 If the conventional ' level of 0.05 had been
used, we would then have a 90% CI.

Noninferiority
In the companion paper we were not actually interested in
equivalence per se because the clinical question was not
whether the experimental device warmed as well as the
current warming standard, forced air. Instead, the question
was whether the new system was at least as good as forced
air. We thus sought noninferiority—in other words, that the
circulating water sleeve was no worse than forced air, and
thus either equivalent or better. Specifically, our null hy-
pothesis was that mean distal esophageal (core) tempera-
ture in patients assigned to the circulating water sleeve was
)0.5°C lower (i.e., worse) than was mean core temperature
in those assigned to forced-air warming. The correspond-
ing alternative hypothesis was that mean intraoperative
core temperature was not !0.5°C lower in patients warmed
with a warm water sleeve than with an upper body
forced-air cover, and perhaps higher.

Our primary noninferiority analysis included multiple
intraoperative core temperature measurements per patient,
as is detailed below. By way of example, we first consider
a noninferiority test restricted to a single temperature in
each patient recorded 60 minutes after induction, as in the
superiority test in Equation (3) above.

A noninferiority test is basically a 1-sided equivalence
test. When higher values of the outcome are desirable, we
test the null hypothesis that the preferred treatment is
worse by ! or more against the alternative that it is either
better or at least no more than ! worse, as

H0: "E # "S ( # ! versus H1: "E # "S * # ! (5)

with a 1-sided test, conducted at the a priori significance
level, ' (typically either 0.05 or 0.025). The noninferiority
test is 1-sided because we test only one direction, i.e., that
the treatment difference is no smaller than %! (when large
values of the outcome are desirable). Expressing H1 as
"E # "S & ! * 0 (by moving the ! to the left side in
Equation (5)) leads to the t test statistic to assess noninfe-
riority, i.e., whether the difference in means is above the
lower limit of %!, as
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TL $
"̂E # "̂S & !

!Sp
2 #1/nE & 1/nS$

. (6)

Noninferiority is claimed if TL is larger (because H1 has a
“greater than” sign) than the value of T from a t distribu-
tion with nE % nS % 2 df at 1 % '. The P value is the
probability of observing a larger value of TL if the null
hypothesis (i.e., inferiority) were true in the population
sampled from. For a P value less than ', we reject H0 and
conclude noninferiority, i.e., that "E is no more than ! less
than "S. Inserting the estimated group means and standard
deviations, the observed test statistic TL becomes

TL $
35.96 # 35.87 & 0.5

!0.452 #1/37 & 1/34$
$

0.091 & 0.5

0.106
$ 5.6.

(7)

Our a priori ' was 0.025, so we compare 5.6 to 1.99, the t
distribution at 1 % ' " 0.975 with 37 & 34 to 2 " 69 df.
Because 5.6 is larger than 1.99, we reject the null hypothesis
and claim noninferiority at a ! of 0.5°C (P value '0.001).

Alternatively, when lower values of the outcome variable
are desirable, the signs are reversed from above, so that
Equation (5) is H0: "E # "S ) ! versus H1: "E # "S + !,
the numerator for Equation (6) is "̂E # "̂S # !, and
noninferiority is claimed if TL is smaller (not larger) than the
value of T from a t distribution with nE # nS # 2 df.

More simply, noninferiority is claimed if the estimated
100(1–')% lower confidence limit is above %! (when higher
values are a priori more desirable) or when the upper limit
is below &! (when lower values more desirable). In our
example the estimated lower 100(1–')% confidence limit
for ' " 0.025 is

"̂E # "̂S # t1%.025,69 df #SÊ"̂E # "̂S$

"0.091%1.99(.106)"%0.12. (8)

Because %0.12 is above the %! value of %0.5, noninferiority
is concluded for the circulating water sleeve in comparison
with forced air at the 0.025 significance level. A significant
noninferiority test (as in Equation (7)) will coincide with the
lower end of the estimated CI being above the specified %!
(or below &! if lower values of the outcome are desirable).

HYPOTHESIS TESTING WITHIN A
REGRESSION MODEL
One of the basic tests described in the previous section is
often all that is needed to assess either superiority, nonin-
feriority, or equivalence. However, an analogous regression
modeling approach is helpful in certain situations. For
example, one might want to adjust for imperfectly balanced
baseline variables to avoid confounding. Adjusting for
baseline variables usually improves precision of the treat-
ment effect estimate to the extent that the variables are
correlated with a continuous outcome. Precision can also
often be gained by adjusting for the baseline value of the
outcome variable itself.16 Finally, a regression model is
often a good approach for a repeated-measures setting.
Again, using continuous outcomes, we begin with a linear

regression model to test superiority and noninferiority (for
a single outcome), and then discuss a linear mixed-effects
model for the repeated-measures setting.

Superiority via Linear Regression Modeling
The outcome Y can be modeled as a function of treatment
group in a linear regression model as

Yi $ ,0 & ,1 - treatmenti & ei , (9)

where Yi is the outcome of interest (here, intraoperative
temperature at 60 minutes) for the ith subject; ,0 is the
intercept, equal to the mean of Y when treatment " 0; ,2 is
the treatment effect, the difference between the mean of Y
for treatment and control (i.e., "E %"S); treatmenti is a
binary indicator for the ith subject equal to 1 for treatment
(circulating water sleeve) and 0 for control (forced air
cover), and ei is the error term or residual for the ith subject,
i.e., the difference between the model prediction and the
observed data. Thus, the mean of Y for a particular group
is equal to ,0 when treatment " 0 and the ,0 & ,1 for
treatment " 1, and ,1 is the difference. Using the linear
regression model in Equation (9), one can describe the null
and alternative hypotheses for a superiority test by using
the treatment effect ,1 as

H0: ,1 $ 0 versus H1: ,1 % 0. (10)

From standard statistical software we obtain a treatment

effect estimate ,̂1 and its estimated SÊ,̂1.When no addi-
tional covariables are included in Equation (9), ,̂1 is equiva-
lent to "̂E # "̂S, the observed difference in means, and

SÊ,̂1 is equal to !Sp
2 #1/nE & 1/nS$. For a 2-sided superior-

ity test we then assess whether the difference in means is
greater than zero, using the test statistic

TS $
"̂E # "̂S

!Sp
2 #1/nE & 1/nS$

$
,̂1

SÊ,1

, (11)

and comparing the absolute value of TS to a t distribution
with nE % nS % 2 df as in Equation (2). Inserting tempera-
tures from the companion paper at 60 minutes after intu-
bation to the regression model in Equation (9), we obtain

estimates ,̂0 $ 35.87, ,̂1 $ 0.091, and SÊ,1 $ 0.106 ,
resulting in an equation to estimate means for either group
as Mean Yi " 35.87 & 0.091 ( Treatment (0 or 1) and a
superiority test identical to Equation (3). With the same P
value of 0.39, we do not reject the null hypothesis of equal
means.

In general, a linear regression model approach compar-
ing groups on a single outcome with no additional covari-
ables gives results identical to the simple approaches
discussed above—for superiority, noninferiority, or equiva-
lence designs—and has similar assumptions (normality of
the residuals and equal variances of the residuals for the 2
groups). However, perhaps the most common reason for
using a regression approach is to include covariables in the
model to increase precision, adjust for confounding, test for
interactions, and assess the association of these variables
with the outcome. In such cases, inference on the main
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effect of interest, the treatment effect, would still be as-
sessed using ,̂1and its SE as in Equation (11), although the
estimates might be attenuated by the addition of the
covariables (e.g., when adjusting for confounders).

Noninferiority from Same Linear
Regression Model
For noninferiority, the hypotheses using the modeling
approach are the same as in Equation (5), with the treat-
ment effect expressed as ,1, and with the null hypothesis
H0: ,1 ( %! versus the alternative H1: ,1 ! %!. The same
linear regression model as for superiority testing in Equa-
tion (9) is used to obtain estimates of treatment effect and
SE, and the noninferiority ! is added to the test statistic as

TNI $
"̂E # "̂S & !

!Sp
2#1/nE & 1/nS$

$
,̂1 & !

SÊ,̂1

. (12)

In this basic case (no covariables, and the outcome Y being
individual temperatures at 60 elapsed minutes), the result-
ing test for noninferiority and CI for the difference are
exactly as in Equation (7).

Repeated-Measures Designs
We first give an overview and discuss some unique fea-
tures of a repeated-measures design and analysis and then
demonstrate assessment of noninferiority in such a design
with results from the companion paper.
Analyzing repeated-measures data. In studies of periop-
erative management, it is often intuitive to assess the effect
of treatment across a range of measurement times or other
within-subject factors. Such repeated-measures designs
have the benefit of usually increasing power over studies
with a single outcome measurement by decreasing the SE
of the treatment effect. When the outcome consists of
repeated measurements on the individual patients, nonin-
feriority (or equivalence or superiority, depending on the
design) can be assessed by tests analogous to the models
above. Some unique features of a repeated-measures de-
sign and analysis are the data setup, the within-subject
correlation across the repeated measures, and the potential
interaction between treatment effect and the repeated factor
(elapsed time in our example). Crossover or paired-data
designs,17,18 in which the treatment itself (perhaps anes-
thetic dose or type) is the repeated factor, can also be
analyzed in the repeated-measures framework. We focus,
however, on 2-group parallel designs in which the repeated
factor is distinct from the treatment or intervention factor.

Most statistical programs require data for a repeated-
measures analysis to have a single row per subject per
repeated measurement, with variables for identification
(ID), treatment, time, and outcome. Any included covari-
ables are included in additional columns. The online Ap-
pendix 1 (http://links.lww.com/AA/A209) contains the
data and layout for the companion paper analysis.

Measurements within a subject are likely to be more
similar than are measurements between subjects. Conse-
quently, within-subject correlation must be considered in
the design and analysis of a repeated-measures design. We
cannot assume all data points to be independent as we do

when there is one observation per subject. In the compan-
ion paper, temperature measurements were planned to be
taken for each patient at the same 15-minute intervals
starting 15 minutes after induction, through 240 minutes.
We therefore planned for and used a linear mixed-effects
model19,20 (using the Mixed procedure in SAS statistical
software),21 in which we estimated a common (i.e., ex-
changeable) correlation between all pairs of within-subject
measurements. Other viable options for the correlation
structure would have been autoregressive (i.e., assuming
less correlation for times farther apart) and unstructured
(i.e., a distinct correlation for every pair of measurement
times). The estimates for the chosen correlation structure
are modeled in what is termed the “R” matrix, and speci-
fied in the SAS Mixed procedure, for example, using the
“repeated” statement.

Besides allowing assessment of fixed effects (e.g., inter-
vention, age, body mass index) as in simple linear regres-
sion, and adjusting for within-subject correlation through
the R matrix, the linear mixed-effects model can incorpo-
rate extra variation in an outcome due to random effects,
i.e., variables with multiple, correlated observations within
unit (such as patient, anesthesiologist, or clinical site), for
which the observed units are typically only a subset of the
desired inference. Alternatively, a patient’s deviation from
an estimated mean slope of an outcome measured over
time, or a patient’s deviation from the overall intercept (i.e.,
the outcome value at time zero of the regression line), can
be modeled as a random effect. Variation in the outcome
due to random effects is modeled in the “G” matrix, and
specified in SAS Mixed procedure, for example, using the
“random” statement.22 For the companion paper, no random
effects other than the default error term were explicitly
modeled, because within-subject correlation was accounted
for in the R matrix. For example, extra variation due to clinical
site was so negligible that no variance for this potential
random effect could be estimated.

In practice, linear mixed-effects modeling has largely
replaced the traditional “repeated-measures analysis of
variance (ANOVA)” for repeated-measures designs. One
major reason is that whereas the traditional method re-
quires all patients to be measured at the same time points
and with no missing data, mixed-effects modeling allows
for differing numbers of measurements and different mea-
surement times for each subject, as well as data that are
missing at random. The linear mixed-effects model is thus
considerably more practical for intraoperative studies, in
which patients may or may not have regularly scheduled
measurements, but certainly have operations of varying
lengths. For example, patients in the companion paper had
a median (quartiles) of 15(12,16) temperature measure-
ments, but 14 of 71 patients had 10 measurements or fewer.
Most of the variability in the number of measurements
came from differing lengths of surgery, but some patients
had missing data for some of the 15-minute time intervals.
The mixed-effects model can also handle the common case
(especially in retrospective studies) in which no 2 patients
are measured at the same time points. In addition, whereas
the traditional model requires the same correlation for all
pairs of measurements, the linear mixed-effects model

STATISTICAL GRAND ROUNDS

682 www.anesthesia-analgesia.org ANESTHESIA & ANALGESIA



allows estimation of random effects and a wide variety of
flexible within-subject correlation structures.

Flexibility regarding the number of measurements per
patient is a main strength of the linear mixed-effects model,
but it is also usually optimal for comparative groups to
have a similar mean number of measurements per patient.
First, the linear mixed-effects model gives more weight to
patients having more measurements, and second, a sub-
stantial difference between groups in the average number
of measurements per patient may make inference between
the groups difficult. For example, a linear mixed-effects
model comparing groups on intraoperative glucose levels
in which glucose was measured every 15 minutes in the
experimental group but much less frequently (every 60
minutes on average) in the standard care group would give
more weight to the experimental group patients and be
more accurate in summarizing the glucose pattern of the
experimental than the standard care patients.

The relationship between time (or whatever the re-
peated factor) and outcome may be of interest in itself, but
in a comparative intervention study it is usually included in
the model to remove an important source of variance and
to assess interaction with treatment. Time can be modeled
along with the treatment effect as

Yij $ ,0 & ,1 treatmenti & ,2 timej & eij, (13)

where Yij is the observed temperature for the ith subject at
the jth time, and eij is the error term. The repeated factor
can be modeled either as a continuous variable as in Equation
(13) or as a categorical factor for which binary indicator
variables for each level (here, each time point) except the
reference level are entered into the model. Choice depends on
the research question and the observed shape of the data.
Time modeled as a continuous variable enables estimation of
the average change in outcome per unit time, and is most
appropriate when a linear increase or decrease is expected
and observed, and the categorical option is useful if it is clear
that the outcome does not follow a linear pattern over time, or
if comparisons among the times or among treatments at
specific times are of interest.

It is often of interest to assess the interaction between
treatment and time. If the hypothesis is that one method is
noninferior (or superior or equivalent, again depending on
the design) to the comparator method at any of the measured
times, we first assess whether the treatment effect is consistent
over time by testing for a Treatment ( Time interaction. There
is an interaction whenever the effect of one factor depends on
the level of another. For example, some evidence for a
Treatment ( Time interaction is present in Figure 1, where
mean core temperature with the warm water sleeve appears
to be the same or slightly lower than the comparator at early
times but higher than the comparator at later times.

If no Treatment ( Time interaction is detected, the
overall treatment effect can be assessed marginally, that is,
by collapsing over time. This is done by fitting a model as
in Equation (13) to assess the treatment effect while adjust-
ing for time in the same model. If time is categorical and all
patients have the same number of measurements, the
marginal approach is equivalent to taking the arithmetic
average of all the temperatures in each patient, and then

conducting a simple t test (for noninferiority or superiority)
on the patient averages using the methods above.

If the interaction is statistically and clinically significant,
and particularly if there is a qualitative interaction (i.e., the
direction of treatment effect varies across the times) versus
quantitative interaction (i.e., effects are in same direction
but vary only in degree over time), the treatment effect
should be assessed at specific time points and not overall.
With time as a continuous variable, the Treatment ( Time
interaction is assessed by testing whether ,3 in the follow-
ing model is equal to zero:

Yij $ ,0 & ,1 treatmenti & ,2 timej &

,3 treatmenti - timej & eij. (14)

However, in certain situations the Treatment ( Time interac-
tion is irrelevant because it does not matter at which point in
time a patient’s values were increased (or decreased); a
summary of each patient’s values over the relevant time
interval is the primary interest. Here the primary outcome can
be a single value consisting of the patient average or the
time-weighted average and tested via a simple t test as in
Equation (4) for equivalence or Equation (5) for noninferiority.
The time-weighted average approach directly accounts for
time between measurements and is particularly useful if the
times are not equidistant, in which case the simple average or
repeated-measures approach may not be appropriate. If times
are equidistant, then the time-weighted-average approach
gives the same result as does the simple average, and the same
as the linear mixed-model approach with equal numbers of
measurements per patient and no Treatment ( Time interac-
tion specified.
Noninferiority in a repeated-measures design. In the
companion paper we in fact wanted to make conclusions
about the noninferiority of circulating water sleeve versus
forced-air warming at specific times during the surgery.
Therefore, a patient summary such as time-weighted aver-
age was insufficient because that approach would average
all within-patient temperatures before the model was con-
structed. We thus needed a repeated-measures model to
assess whether the treatment effect was consistent across
surgical times by testing for a Treatment ( Time interac-
tion. As was mentioned, we used a linear mixed-effects
model with a common “exchangeable” correlation, such
that a single correlation coefficient of 0.71 was estimated for
all pairs of time points within subjects. Although an autore-
gressive structure may have been a more natural choice and a
somewhat better fit to the data, because measurements closer
together within a patient may be expected to be more corre-
lated than would those farther apart, results were quite
similar with either method and the conclusions were the
same. With the autoregressive structure the estimated corre-
lations ranged from 0.96 for adjacent pairs of measurements to
0.56 for the measurements farthest apart. An unstructured
correlation model was not possible because of the large
number of measurements per patient, but is generally a good
choice when there are relatively few repeated measurements
in relation to the number of patients.

A plot of temperature over time for the 2 randomized
groups showed that temperature did not have a linear
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relationship with time: instead, it decreased in both groups
for the first hour, and then progressively increased through
the remaining 4 study hours (Fig. 1). For our main analysis,
we therefore considered each time point to be a different
category, instead of modeling time as a single continuous
variable as in Equations (13) and (14). The model thus
included variables for treatment group, categories of time,
and the Treatment ( Time interaction. By listing time as a
categorical or “class” variable, most statistical programs
will automatically create the required design variables for
the time effect (i.e., design variables time30 through time240
for each 15 minutes of elapsed time, excluding time15,
because the first measurement was the reference time), and
the Treatment ( Time interaction terms as

Yij $ ,0 & ,1 TXi & ,2B time30 & ,2C time45 &

,2D time60 & … & ,2P time240 & ,3B TXi - time30

& ,3C TXi - time45 & … & ,3P TXi - time240 & eij. (15)

We assessed the Treatment ( Time interaction by testing
whether the vector of interaction terms ,3B % ,3P was equal
to zero for the model in Equation (15) using an F test, a
default statistical software output from such a model. The
interaction was highly significant at P ' 0.001 (for either
categorical or continuous time), implying a nonconsistent
treatment effect over the times. We therefore followed with
separate assessments of noninferiority for elapsed hours 1,
2, 3, and 4 of surgery.

Direct estimates of the treatment effect at specific times
could be derived by specifying “least squares means” for
the Treatment ( Time interaction in Equation (15), and
then searching the statistical software output for the com-
parisons of interest. More efficiently, we obtained direct
estimates of the treatment effect at specific times using an
alternative form of Equation (16) in which we removed the
intercept (an option in most statistical software) and the
treatment variable, and only included time and Treatment (
Time interaction variables, as in

Yij $ ,2A time15 & ,2B time30 & ,2C time45 &

,2D time60 & … & ,2P time240 & ,3A TXi - time15

& ,3B TXi - time30 & ,3C TXi - time45

& … & ,3P TXi - time240 & eij. (16)

The estimated betas for the interaction terms in this model
directly estimate the difference between groups at each
respective time point, and are reported in the Difference
column in Table 1 (modified from Table 2 of the companion
paper) for hours 1, 2, 3, and 4. We then performed the same
noninferiority test as in Equation (12), each time substitut-
ing the corresponding estimated treatment effect and SE
from the model in Equation (16). Using the Holm–Bonferroni
multiple comparison procedure,23 all 4 tests for noninferi-
ority were significant at the respective criterion, and non-
inferiority of the circulating water sleeve to forced air was
concluded at each time point (Table 1). We tested only at
each hour because testing every 15 minutes would not be
clinically relevant and would thus be an inefficient use of '
(i.e., requiring an overly conservative significance criterion
for each test).

It is common practice to adjust for the baseline value of
a continuous outcome measure because doing so decreases
the SE of the treatment effect (thus increasing power) to the
extent that the baseline and outcome measurements are
positively correlated. This could be done here by adding
baseline temperature to models (15) or (16). We considered
such an adjustment as a secondary analysis in the compan-
ion paper. However, correlations between baseline and
temperature at various intraoperative times were either
close to zero or negative, and adjusting for a variable
negatively correlated with outcome increases the SE of the
treatment effect, thus decreasing power. Therefore, no
adjustment was made. Clinical site was not related to the
outcome (P " 0.94), and there was no evidence of Treat-
ment ( Site interaction (P " 0.88). Similarly, no adjustment
for confounding was done because the randomized groups
were well balanced on all baseline variables.

EXTENSIONS TO ADDITIONAL OUTCOME TYPES
In addition to continuous outcomes, noninferiority and
equivalence testing in both the single outcome and
repeated-measures settings can be constructed for most
data types4—including binary,4,5,11,24 ordinal,25 nonnormal
continuous (extension of Wilcoxon–Mann–Whitney
test),4,26 and survival outcomes11,27—by adapting the usual
tests for superiority. Of mention, Tunes da Silva et al.11 give
a thorough presentation of binary and survival outcomes.

For nonnormal continuous or ordinal outcomes, nonin-
feriority and equivalence tests can be based on the fact that
the Wilcoxon–Mann–Whitney test for superiority actually
tests the probability P& that a randomly chosen subject

Table 1. Testing Noninferiority of the Warm Water Sleeve to Forced Air
Elapsed hour
(N: WW, FA)

Warm water mean
(SE)

Forced air mean
(SE)

Difference
(95% CI)a

Significance
criterionb

P
valuec

1 (37, 34) 35.96 (0.081) 35.87 (0.085) 0.09 (%0.14, 0.31) 0.0062 '0.0001
2 (31, 32) 36.06 (0.084) 36.09 (0.086) %0.03 (%0.26, 0.21) 0.0083 '0.0001
3 (26, 29) 36.16 (0.087) 36.37 (0.087) %0.21 (%0.45, 0.03) 0.0125 0.011
4 (18, 20) 36.25 (0.094) 36.46 (0.094) %.0.21 (%0.47, 0.06) 0.0250 0.016

WW " warm water sleeve; FA " forced air; SE " standard error; CI " confidence interval; NI " noninferiority.
a Difference " mean WW minus mean FA. Normally, NI concluded if the lower 95% confidence limit is above NI delta of %0.5°C. Here, we also need P values to
be less than the given Holm–Bonferroni significance criterion.
b Holm–Bonferroni method23: significance criterion for smallest P value " 0.025/k, where k " 4 tests; next smallest P value criterion is 0.025/(k % 1), etc.
c P value from 1-tailed test for NI using linear mixed model: all are noninferior because each P value is less than criterion.
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from the experimental group E has a higher (or lower)
outcome value than does a randomly chosen subject from
group S, with null hypothesis H0: P& " 0.5 (i.e., E and S
subjects equally likely to have higher values). For noninfe-
riority, then, the null and alternative hypotheses when higher
values of the outcome are desirable can be specified as

H0: P & ( 0.5 # ! vs H1: P & * 0.5 # !, (17)

where ! is the deviation from a probability of 0.5 chosen to
define the noninferiority region. Construction of the test for
noninferiority can be done using a 1-sided version of the
equivalence test outlined in Wellek (chapter 6) for nonnor-
mal continuous outcomes.4

For binary outcomes, basic noninferiority and equiva-
lence testing involves substituting proportions for means
and the SE of the difference in proportions for the differ-
ence in means, with ! specified as an absolute difference in
proportions.5,11 Alternatively, the noninferiority or equiva-
lence ! can be expressed as a ratio of 2 proportions, or
relative risk. For example, suppose we want to assess
whether success with preferred treatment E is not worse
than that with standard S. A null hypothesis for noninferi-
ority could be that the success proportion (P) with E is at
least 10% less than that for S, for a ratio ! of 0.9, and H0:
PE/PS ( 0.90. The alternative would be that the success
ratio is !0.90, or H1: PE/PS ! 0.90. Using algebra, H1 can
be expressed as H1: PE % 0.9 PS ! 0, and a test statistic for
noninferiority would be

TL $
p̂E # !p̂S

!p̂E#1 # p̂E$/nE & p̂S#1 # p̂S$!2/nS

, (18)

where p̂E and p̂S are the observed success proportions for
treatments E and S, respectively, and ! is the minimum
ratio of proportions deemed to be “not worse.” When the
ratio ! is '1.0, i.e., when a higher outcome proportion is
desirable, noninferiority testing using the ratio formulation
in Equation (18) is always more efficient (smaller SE due to
!2 in denominator) than is the traditional approach5 of
specifying the ! as an absolute difference in proportions
and using the formula analogous to Equation (6).24 When a
lower outcome proportion is desirable, the hypotheses can
be rearranged to make ! '1.0. As in the traditional ap-
proach for dichotomous outcomes, noninferiority testing
using Equation (18) can be used whenever the proportions
are not extremely close to 0 or 1 and the sample size is large
enough to assume the proportions are approximately nor-
mally distributed, typically when np ! 5 and n(1 % p) ! 5
(where p refers to each of PE and PS, and n refers to each of
nE and nS).

In a repeated-measures design with binary outcome,
noninferiority or equivalence can be assessed using a
generalized estimating equation28,29 or generalized linear
mixed-model approach30 to account for the within-subject
correlation by using methods analogous to those above.

A noninferiority ! can also be expressed as a minimal
odds ratio (when the binary outcome event is desirable (i.e.,
success)), for which treatment E is not worse than treatment
S, and testing occurs on the log-odds ratio scale. The CI
approach would claim noninferiority if the lower

100(1–')% confidence limit was above the odds ratio !. Of
note, however, the absolute difference in proportions im-
plied by a particular odds ratio or relative risk depends
heavily on the control group success proportion. Therefore,
care must be taken to assure that the chosen odds ratio or
relative risk ! implies a clinically relevant difference in
proportions.11

SAMPLE SIZE CONSIDERATIONS
For noninferiority testing, sample size calculations are the
same as those for a 1-tailed test for superiority when the
specified ! is the same as the superiority population
difference to detect. We stress, though, that a noninferiority
! for a comparative efficacy study should be considerably
smaller than a specified population difference used to
assess superiority of a treatment versus placebo. For this
reason, noninferiority trials usually require more patients
than do superiority trials.31 Per-group sample size for a
noninferiority design is

n $
2#Z1 # ' & Z1 # ,$2.2

!2
(19)

where Z1%' and Z1%, are the standard normal deviates
corresponding to 1 minus the significance level (') and 1
minus the type II error (,), respectively, .2 is the variance
or squared SD of the outcome, and ! is the noninferiority
!.11 For example, for ' " 0.05, , " 0.10, . " 0.5, and a
noninferiority ! of 0.25, sample size per group would be

n $
2#1.645 & 1.28$20.52

0.252
$ 69. Alternatively, with ' "

0.025 (so that z " 1.96), the resulting sample size is n " 84
per group. The superiority formula (2-tailed test) replaces
Z1%' with Z1%'/2.

In an equivalence trial, multiple comparison adjust-
ments for performing the two 1-sided tests are unnecessary
because both tests must be significant to claim equivalence,
and only one conclusion is made (equivalence claimed or
not claimed). However, because both tests must be signifi-
cant to detect a treatment effect that lies between the 2
boundaries, the most appropriate sample size formula
includes the standardized normal deviate (Z) correspond-
ing to “1 minus ,/2” instead of “1 minus ,“ as in
noninferiority or superiority testing. Sample size for a
given ', !, and power is thus higher for an equivalence
design than for a noninferiority design.32

For repeated-measures designs, accurate sample size
calculations require estimation of the degree and structure
of the within-subject correlation, along with the average
number of measurements per subject (in addition to ', ,,
SD, and !). When the repeated factor is distinct from the
intervention factor, as in the companion paper, lower
within-subject correlations across the repeated factor and
more observations per subject both decrease the required
sample size.33,34

It remains important though, in repeated-measures de-
signs, to plan for sufficient power to detect group differ-
ences at particular levels of the repeated factor in the
presence of a Treatment ( Repeated Factor interaction. In
the companion paper, for example, we planned for 90%
power at the 0.025 significance level to detect noninferiority
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of the warming sleeve to forced air with an SD of 0.6°C and
noninferiority ! of 0.6°C. Although this calculation, result-
ing in 32 patients per group, was conservative by ignoring
the added power inherent in the repeated-measures design,
it would have been quite appropriate to calculate the
sample size assuming group comparisons at the 4 indi-
vidual time points due to the possible (and realized!)
Treatment ( Time interaction, thus using an ' of 0.025/4 "
0.00625 in the calculations.

DISCUSSION
Claims of equivalence or noninferiority can only be made in
studies specifically designed to assess them, and in which the
null hypothesis of lack of equivalence or noninferiority is
rejected in favor of the a priori defined alternative.5 Such
claims are accompanied by the CI for the treatment effect
falling either within the prespecified equivalence region or
above the prespecified noninferiority !. It is thus not valid to
assess noninferiority or equivalence in a study designed for
superiority, even though it might be tempting to “rescue” a
negative test of superiority by concluding equivalence, “simi-
larity,” or noninferiority, or perhaps by even choosing an a
posteriori ! that fits the observed data!

Choosing an appropriate a priori ! for an equivalence or
noninferiority study is key, because the ! is an integral part
of the hypothesis and is also used in the data analyses.35,36

The need for a defined ! differs from superiority trials in
which the anticipated treatment effect is only used for
sample size calculations. Choice of ! should be given
careful thought, because the selected value will have enor-
mous impact on sample size and interpretation of the
observed results. An equivalence ! should be considerably
smaller than the “clinically important difference” that
would be used in a power analysis for assessing superiority
of treatment versus placebo,9 and rationale for the chosen !
should be explained. For example, the companion article by
Ruetzler et al.7 states that a ! of 0.5°C was chosen for
assessment of noninferiority because no clinically impor-
tant differences had been seen in previous studies when the
average temperature differed by '0.5°C. A ! that is too
large promotes false claims of equivalence or noninferior-
ity, whereas too small a ! inflates the sample size, thus
adding cost to a study and prolonging the time required
to accrue subjects. The general rule is to use a ! that is
clinically unimportant, based either on clinical experi-
ence or previous work showing that a given ! is unlikely
to be associated with substantial differences in important
outcomes.37

We demonstrate methods for noninferiority and
equivalence testing in the context of a regression model,
and in doing so highlight design and analytic features of
repeated-measures designs, including incorporation of
the within-subject correlation and the importance of the
Treatment ( Time interaction. Use of a linear mixed-
effects model allows specification of the within-subject
correlation and estimation of random effects. It is much
more flexible than the traditional repeated-measures
ANOVA, because differing numbers of repeated measure-
ments are permitted across subjects (thus including some
tolerance for missing data and the natural variability in
surgery lengths) and a host of correlation structures may be

considered. For example, correlation between measurements
that are closer together in time can be estimated distinctly
from measurements farther apart. In addition, models can be
fit in which a patient’s deviation from an estimate common
slope or intercept is treated as a random effect. For these
reasons, the traditional repeated-measures ANOVA has been
largely replaced by the linear mixed-effects model.

Paramount to any noninferiority or equivalence design
is a detailed analysis plan that addresses the study hypoth-
eses and provides contingency analysis plans in case data
assumptions are not met. Particularly, a repeated-measures
design should specify the role of time (or whatever the
repeated factor) and its relationship with the treatment
effect. For example, if conclusions such as “treatment A is
noninferior to treatment B at any time measured” are
desired, then assessment of the Treatment ( Time interac-
tion should be planned. Comparisons at specific time
points (with adjustment for type I error) should be planned
to follow if the interaction is significant; otherwise, the
“marginal” treatment effect would be assessed by collaps-
ing over time, which is the more powerful analysis because
all data are used in a single comparison.

On the other hand, if the timing of a patient’s increased
or decreased outcomes is unimportant, the Treatment (
Time interaction may be deemed irrelevant in the planning
stage, and the time-weighted average or other within-
patient summary measure chosen as the primary outcome.
The time-weighted average gives a single-number subject-
specific summary, while accounting for uneven spacing of
measurements, gives equal weight to each subject and
reduces the analysis to a simple t test instead of the more
complex repeated-measures analysis. It is thus usually
preferable to the simple average of a subject’s measure-
ments. Other choices might be the maximum, minimum, or
median value of the outcome for a subject. The single-
number summary should be the outcome measure that best
represents the study hypothesis.

In summary, proper design of clinical studies depends
critically on the type of conclusions investigators will want
to make, including potential claims of superiority, noninferi-
ority, or equivalence. Each design has specific implications for
formulation of the hypotheses, the corresponding analytic
methods,12,38 and reporting (see revised CONSORT statement
for equivalence and noninferiority designs).9 Thoughtful
choice of the equivalence or noninferiority ! is a critical step in
these designs because the a priori ! is used directly in the
analyses and interpretation of results. Simple univariable
analyses will be appropriate in many circumstances and are
easy to implement. But, as is shown, each of the discussed
designs can be analyzed in a regression model, thus facilitat-
ing covariable adjustment, interaction assessment, and
repeated-measures analyses.
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