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In clinical studies, the usual goal is to assess whether or 
not an intervention or exposure affects the outcome of 
interest. However, probing further to understand the 

mechanism(s) for how an intervention affects outcome is 
a vital and underpursued element of clinical research—
for both randomized and nonrandomized studies. In this 
paper, we discuss mediation analysis which attempts to sort 
out whether and how much of the effect of an intervention 
goes though prespeci!ed intermediary or mediator variables.

In our companion paper, Saager el al.1 compared 
119,298 patients with anemia, de!ned as hematocrit <36% 
for women and <39% for men, to the same number of 
propensity-matched (i.e., confounder-adjusted) nonane-
mia patients on a set of 9 major complications. For the 
main analysis, they assessed the overall or total effect of 
anemia on each outcome. Such is the standard analysis 
in most research studies. However, this total effect can 
be divided into the direct effect of anemia and indirect or 
mediated effects. Indirect effects are those which occur by 

!rst affecting a mediating variable or mediator which in turn 
causes increased (or decreased) risk of the outcome. For 
example, Saager et al.1 presupposed that anemia might 
lead to increased wound contamination risk and thereby 
increased risk of mortality. The direct effect of anemia was 
estimated as the association between anemia and outcome 
after adjusting for the potential mediators. Since these 
direct effects, or effects of anemia “per se”, were much 
smaller than the total effects, the authors concluded that 
the mediator variables were responsible for at least some 
of the total effect of anemia on outcomes. In this paper, we 
discuss mediation effects in more detail and demonstrate 
how to estimate them.

Mediation differs from confounding in the direction of 
causality: while mediators lie on the causal pathway between 
treatment and outcome, confounders in"uence both the 
exposure of interest and the outcome (Fig. 1). A mediating 
variable thus occurs temporally after the exposure—it is 
both caused by the exposure variable and is a cause of the 
outcome.2,3 However, a confounding variable, by de!nition, 
temporally occurs before the exposure, such as past medi-
cal history or demographic data available before a surgical 
exposure.

When adjusting for confounding, typically in nonran-
domized studies,4–7 care must be taken to not include media-
tor variables. To the extent that the effect of an exposure on 
outcome goes though mediator variables, adjusting for those 
variables along with true confounding variables would tend 
to wash away the effect of interest. For example, in a study 
by Turan et al,8 several variables suspected of at least par-
tially mediating the effects of smoking on outcome, such as 
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congestive heart failure, were a priori identi!ed and there-
fore were not adjusted for in the analysis of the total effect of 
smoking on outcome. Authors thus estimated the “overall” 
or “total” effect of smoking on outcome by only adjusting 
for the confounding variables. Biological knowledge and 
intuition of the proposed mechanism(s) for an exposure to 
affect an outcome are keys to distinguishing mediators from 
confounders.

Mediation can exist in both randomized and nonrandom-
ized studies. While randomized studies typically do not 
include confounding variables, since with suf!cient sample 
size baseline balance is achieved by the design, they do 
often involve mediators. Namely, there are often 1 or more 
mechanisms thought to be responsible for a hypothesized 
treatment effect on outcome. For example, authors in the 
DeLiT randomized trial9 hypothesized that Dexamethasone 
administration would reduce the incidence of major com-
plications by !rst reducing surgical in"ammation mea-
sured by cytokines. Mediation analysis can formally assess 
whether a hypothesized factor actually mediates the effect 
of treatment on outcome.

Mediation analysis is an emerging area in statistical 
theory and practice,2,10–14 and is part of the broader area of 
causal inference which strives to understand causal relation-
ships in a wide variety of research settings.15–18 The study by 
Saager et al.1—which we refer to as the “companion paper” 
throughout—exempli!es several of the challenges in assess-
ing mediation. For example, special consideration must be 
made for multiple mediator variables, different mediator 
data types (i.e., binary, ordinal, and continuous), and mul-
tiple outcome variables. Binary outcomes are more chal-
lenging than continuous outcomes in mediation analysis, 
as we will discuss. The fact that anemia is a chronic expo-
sure as opposed to an acute intervention adds additional 
challenges. Finally, making causal inference in mediation 

analysis  typically requires making strong assumptions and 
having solid biological reasoning or evidence to back up the 
!ndings.

We discuss the proper design and analysis of studies 
investigating mediation, using the companion paper as our 
primary motivating example. The remainder of this article 
proceeds as follows: Designing a mediation study; Effects of 
interest: Implementing a mediation analysis; Requirements 
for claiming mediation; Key assumptions in mediation anal-
ysis; Extension 1: Binary outcome with ordinal mediator; 
Extension 2: Binary outcome with multiple binary media-
tors; Sample size considerations; Discussion.

Throughout this paper, we largely discuss existing meth-
ods for designing and conducting mediation analysis. Since 
we do not propose new methods aside from a proposed 
extension to multiple mediators when the outcome is binary 
(see section Extension 2), we also do not provide proofs 
or analyses demonstrating the statistical properties of the 
mediation estimators that we discuss. The interested reader 
is encouraged to explore the provided references which give 
more details.

DESIGNING A MEDIATION STUDY
A mediation analysis can be either the primary or secondary 
aim of a research study. In either case, the proposed media-
tors should be carefully thought out and decided on before 
the study begins, thus requiring substantial clinical input. 
Biological justi!cation and evidence as to why a variable 
might be a mediator of the relationship between exposure 
and outcome is crucial to being able to claim mediation. 
As we shall see throughout this paper, given the various 
assumptions that one must make, a statistical analysis alone 
is generally not enough to claim mediation.

Causal Diagramming
By de!nition, a proposed mediator should at least poten-
tially lie on the causal pathway between exposure and out-
come, and thus be able to mediate some of the effect of 
exposure on outcome (Fig. 1, top triangle). As a result, a 
helpful step in designing a mediation study is the devel-
opment of a causal diagram, also called a directed acyclic 
graph,18 which maps out the hypothesized directions of 
causality among the exposure of interest, potential con-
founders, and potential mediators. Lying on the causal 
pathway means that the exposure causes (or in"uences) 
the mediator, and that the mediator causes (or in"uences) 
the outcome, both at least to some degree. Therefore, all 
arrows on a causal pathway are in the same direction, as 
opposed to confounding (Fig. 1, bottom triangle) in which 
arrows emanate from the confounder to both exposure and 
outcome. Timing and known or suspected mechanism are 
thus key to identifying plausible mediators. In the com-
panion paper, for example, the authors hypothesized that 
intraoperative wound contamination might at least to 
some degree and/or in some patients be the result of an 
anemic condition, and might also lead to wound infec-
tion as a complication, thus mediating the effect of anemia 
on outcome. More obviously, RBC transfusion might be 
caused at least in part by anemia, and might also lead to 
cardiovascular complications.

Figure 1. Mediation versus confounding. A mediator falls on the 
causal pathway between exposure and outcome. Wound contamina-
tion is a mediator of the effect of anemia on mortality, with BLUE 
arrows indicating the causal pathway exposure → mediator → 
outcome. However, alcohol use is a confounder of the relationship 
between anemia and mortality because it occurs before the expo-
sure and in"uences both the exposure and the outcome, with RED 
arrows pointing to each.
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Acute Versus Chronic Exposures
In mediation analysis, it is helpful to distinguish exposures 
or interventions which are “acute” (e.g., type of anesthetic, 
any preoperative or intraoperative treatment) from those 
which are a chronic condition, habit or disease (e.g., ane-
mia, diabetes, smoking). When the exposure is a periopera-
tive intervention, it is easier to accurately identify suspected 
mediators of the treatment effect on outcome, since a true 
mediator would need to occur in an identi!able time inter-
val between the intervention and the measured outcome. 
Acute interventions can occur in either randomized or non-
randomized studies and are also more likely to be manipu-
lable such as in a randomized trial, making it easier to claim 
causal mediation.

Alternatively, when the exposure is a chronic condition, 
it is more dif!cult to accurately identify potential media-
tors, largely because of timing issues. We may not know 
exactly when such an exposure began, or when the effect 
of the proposed mediators began. In the companion paper, 
some of the investigated mediators clearly would have 
occurred temporally after a patient’s baseline anemia diag-
nosis, such as intraoperative wound contamination and 
intraoperative red blood cell transfusion. However, for 
example, a patient might have acquired anemia after the 
occurrence of another speci!ed mediator, such as reduced 
physical functioning. To the extent that the proposed 
mediators occur before an exposure began, they could not 
be mediators of the treatment effect on outcome. In some 
cases, such variables might be considered confounders. In 
reality a variable may act as a mediator for some patients 
and as a confounder for others; a mediation analysis as we 
describe herein should only be undertaken when it is rea-
sonable to assume that the considered variable is a poten-
tial mediator (i.e., occurs after the exposure) for the vast 
majority of patients.

Another example is a study of Turan et al.8 in which 
history of myocardial infarction (MI) was named a poten-
tial mediator of the effect of chronic smoking on postop-
erative outcomes, since smoking may cause heart disease 
as expressed by MI. But because details on the timing of 
smoking history and history of MI were not recorded in our 
database, we needed to assume that for the vast majority of 
patients MI occurred after smoking had begun.

Manipulable Intervention and Mediators
Since mediation analysis attempts to establish the effect of 
exposure on a mediator and the effect of a mediator on out-
come, it is natural to think of mediation in a causal con-
text rather than just association. However, claims of truly 
causal mediation depend on both exposures and mediators 
being at least theoretically manipulable, that is, modi!-
able, as is required in a randomized controlled trial aimed 
at assessing causal effects of an exposure on outcome.19 
For example, whether a patient receives an intraopera-
tive transfusion, a proposed mediator in the companion 
paper, is under the control of the provider, so is clearly 
manipulable. Presurgical anemia might also be considered 
manipulable, since in many patients the condition could 
be corrected or improved by presurgical transfusion(s), 
although the contrary, inducing an anemia state, would not 

be done. A proposed mediator variable such as dyspnea 
is less likely to be considered manipulable, but this may 
depend on the context.

The requirement of plausible manipulation is based on 
the “potential outcomes” framework of causal inference 
in which each individual has potential responses under 
various levels of manipulable exposures (or similarly, 
mediators), with the understanding that only one of those 
responses is observable at any 1 time. The causal effect of 
interest for an individual, then, is the unobservable differ-
ence between his/her potential responses under the differ-
ent levels.

In summary, cause–effect relationships in media-
tion analysis are made with caution, especially if assign-
ment to either the exposure or the mediator variable(s) is 
nonrandomized.

EFFECTS OF INTEREST: IMPLEMENTING  
A MEDIATION ANALYSIS
Overview
In this main section of the paper, we describe the effects 
of interest for mediation analysis in detail. In doing so, we 
illustrate mediation analysis using data from the compan-
ion paper assessing the extent to which presurgical func-
tional status mediates the effect of presurgical anemia on 
hospital length of stay (HLOS). Functional status is an ordi-
nal variable with levels 1 (best), 2, and 3 (worst). As in the 
companion paper, anemia and nonanemia patients were 
!rst propensity matched on available presurgical confound-
ing variables.

In comparative studies involving mediation, there are 3 
main treatment effects of interest, as displayed in Fig. 2. The 
total effect is the effect of exposure on outcome ignoring 
any mediator(s), for example, the effect of anemia on length 
of stay. This is the usual treatment effect reported in studies 
which do not consider mediation, and is displayed in the 
top diagram—effect c. Second is the direct effect of expo-
sure on outcome, or the effect “per se”, after accounting for 
the mediator(s), illustrated as effect c′ (“c-primed”) in the 
lower diagram. Finally, the indirect or mediation effect of 
exposure on outcome is the effect of exposure on outcome 
through a designated mediator, as in the lower diagram 
(effect a × b), for example, the effect of anemia on hospital 
length of stay through functional status. Below we explain 
the effects in more detail and how to estimate them.

To estimate the effects of interest, 3 distinct regression 
equations are traditionally !t, as displayed in equations (1), 
(2), and (3) and referenced in Fig. 2. In these models, Y is 
the study outcome of interest; X is the intervention or expo-
sure; M is the mediator; and E(Y) and E(M) are the mean or 
expected value of Y and M, respectively, given the variables 
on the right side of the relevant equation.

E   intercept X  covariates as neededY c( ) = + + ( )  (1)

E   intercept  M  covariates as neededXY c b( ) = + + + ( )′   (2)

E  intercept X  covariates as neededM a( ) = + + ( )  (3)

Models (1) to (3) use linear regression when the dependent 
variable (Y or M) is continuous, and logistic regression when 



Mediation Analysis

October 2013  Volume 117  Number 4 www.anesthesia-analgesia.org 983

binary. (Technical note: When logistic regression is used [see 
sections Extension 1 and Extension 2], the left side of the 
relevant equation is a function of E(Y) or E(M), that is, log 
(p/(1 − p)), where p is the probability that Y = 1 or M = 1 
given X and all covariates.)

We assume throughout that a set of confounding vari-
ables is included on the right side (i.e., as independent 
variables) for each model, as needed. This is particularly 
important in observational studies if matching on con-
founding variables was either not done or has resulted in 
exposure groups still imbalanced on some potential con-
founding variables. However, in model (2), the adjustment 
for confounding is needed for all studies (even random-
ized), as discussed below.

Total Effect
The total effect of an exposure (e.g., anemia) on outcome 
(e.g., length of stay) is usually the primary interest in either 
a randomized or nonrandomized comparative study. It is 
the effect of exposure (X) on outcome (Y) while ignoring 
(i.e., not adjusting for) a prespeci!ed mediator variable. The 
total effect is estimated by coef!cient c in model (1), as seen 
in the top diagram in Figure 2. A total effect estimated as 1.5, 
for example, would indicate that the mean length of stay is 
1.5 units higher for patients exposed to X = 1 (anemic) com-
pared with X = 0 (nonanemic), and that some of that effect 
may be due to the ignored mediator, functional status.

For the companion paper, we de!ned Y as log-trans-
formed HLOS, since the actual length of stay was not 

normally distributed (whereas the natural log-transformed 
data was close enough for our demonstration purposes). 
Total effect c was estimated as 0.21, implying that the mean 
(log-transformed) HLOS was estimated to be 0.21 longer 
(95% CI, 0.19–0.22) for patients with preoperative anemia 
compared with those without anemia, as in equation (1)*. 
By exponentiating the natural log-scaled results, we can 
also express c as the ratio of geometric means (95% CI) of 
anemia versus nonanemia patients, or 1.246 (1.237–1.254).

The total effect can be tested against 0 (H0: c=0) using a 
t test, with the SE of c given in a typical regression output. 
In our current data example, it was not necessary to adjust 
for baseline covariates because the anemia groups were pro-
pensity matched on the available factors.

( )E  intercept  covariatesY cX= + +  (1)

Mean log (HLOS) = intercept + 0.21 anemic status (1 or 0) (1)*

As explained below in the section Requirements for 
Claiming Mediation, a signi!cant total effect is not required 
to claim mediation. For continuous outcomes, the total 
effect is the sum of the direct and indirect effects, which are 
explained next.

Direct Effect
The direct effect is the effect of exposure (X) on outcome (Y) 
independent of the effects of any mediating variables, and 
may be interpreted as the effect “per se” of the exposure 
on outcome. Thus, in model (2), the coef!cient c′ represents 
the direct effect of exposure on outcome after adjusting for 
mediator M. This is the direct connection between Exposure 
and Outcome in Figure 2, bottom diagram. For example, a 
c′ of 0.25 would imply that X (anemia) is responsible for 
a difference of 0.25 in mean of Y (log-transformed HLOS), 
or an increase of 28% (i.e., 100 × [1 − e 0.25]) in actual mean 
length of stay, after removing the effect of M (functional sta-
tus) on Y, the latter estimated by coef!cient b in model (2). 
The direct effect can be tested using a simple t test, as with 
the total effect.

Again using the companion paper data, we !t equa-
tion (2) with results in (2)* below. Even though the anemia 
groups are propensity matched, we needed to adjust for all 
baseline covariables in (2) in attempts to remove confound-
ing from the relationship between M and Y (see also Key 
Assumptions In Mediation Analysis). The direct effect of 
anemia on outcome, or c′, is estimated as 0.19, which is 
nearly as large as the estimated total effect of 0.21.

Y c X M= + ′ + +intercept covariatesb  (2)

Mean log (HLOS) =  intercept + 0.19 anemic status  
+ 0.93 functional status + covariates   

(2)*

To the extent that a mediator explains most or all of the 
effect of X on Y, the direct effect tends to approach 0. In the 
companion paper, for example, all of the direct effect odds 
ratios for the binary outcomes were smaller than the total 
effect odds ratios (i.e., closer to 1.0), suggesting some media-
tion through the proposed mediators.

Figure 2. Mediation effects of interest. In the top diagram “c” is 
the total effect of exposure (X) on outcome (Y) ignoring the mediator 
(M). This is the usual treatment effect reported in clinical studies. 
In the bottom diagram mediation of the effect of anemia on length 
of stay through functional status is shown, where “a” is the effect of 
exposure on mediator, and “b” is the effect of mediator on outcome. 
When both effects “a” and “b” are signi!cant, we claim mediation. 
The mediation effect is estimated as the product a times b, or equiv-
alently (for continuous outcome, mediator), as c (total effect) minus 
c′. Effect c′ (“c-primed”) is the direct effect of exposure on outcome 
while adjusting for mediator. Eq.1, eq.2, and eq.3 refer to Equations 
(1)–(3) in the text.Note: Although we have added the clinical applica-
tion, de!nitions and other details, much of the structure and nota-
tion displayed in Figure 2 were borrowed from the website of David 
Kenny at http://davidakenny.net/cm/mediate.htm, with permission.

http://davidakenny.net/cm/mediate.htm
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Indirect or Mediation Effect
Our main interest is in the mediation effect(s), quantifying 
whether and how much of the effect of the exposure on 
outcome goes through, or is mediated by, certain prespeci-
!ed intermediary or mediator variables. The goal is to elu-
cidate the mechanism(s) as to how the exposure affects the 
outcome.

The indirect or “mediation” effect of X on Y through medi-
ator M is estimated in one of 2 ways: the difference method 
or the product method. These methods produce equivalent 
results for continuous outcomes, but as will be explained 
later, this is not the case for binary outcomes.

In the difference method, we estimate the mediation 
effect as the difference between the total and direct effects 
(i.e., c − c′). Using estimates of total and direct effects of 
0.211 and 0.190, respectively, from our companion paper, 
we estimate the mediation effect as c − c′, or 0.211 − 0.190 = 
0.021. We conclude that functional status accounts for about 
0.021 log-transformed days, or about 10% of the total effect 
of anemia on length of stay.

In the product method, the mediation effect is estimated 
as the product a × b, where a measures the strength of the 
effect of X on mediator M in model (3), and b is the effect 
of the mediator on Y adjusting for exposure X and other 
covariates in model (2). In Figure 2 (bottom diagram) effects 
a and b comprise the pathway from exposure to mediator 
to outcome.

In our example, we estimate effect a = 0.023 by !tting 
model (3) using linear regression (we included no baseline 
covariables since the anemia exposure groups were already 
propensity score matched). Anemic patients had an average 
of 0.023 worse functional score (on a scale of 1–3, with 1 
being best) than nonanemic patients (95% CI, 0.021–0.025). 
We conclude that the exposure affects the mediator since the 
95% con!dence interval does not overlap 0.a

E M aX( ) = + +  intercept  covariates (3)

Mean functional status =  intercept + 0.023 anemic status (3)*

We have already estimated effect b as 0.93 in equation 
(2)* above, that is, the effect of functional status (M) on log-
transformed HLOS (Y) adjusting for anemia (X). A 1-unit 
increase in functional status increased log-transformed 
HLOS days an estimated mean of 0.93 (95% CI, 0.91–0.95), 
or by exponentiating, a ratio of geometric mean length of 
stay of 2.53 (2.48–2.59).

Since effects a and b are signi!cant, there is some evi-
dence/suggestion of mediation (see section Requirements 
for Claiming Mediation). We estimate the mediation 
effect as the product a × b, or 0.023 × 0.93 = 0.021, with 
95% CI, (0.019–0.023), statistically signi!cant since it does 
not include 0. See Appendix 1 for details on calculation 
of the SE (Sobel method).20 However, since a mediation 
effect is typically not normally distributed, it is generally 
preferable to use the nonparametric bootstrap resampling 

method to obtain con!dence intervals, as we do for later 
examples.3,21

We interpret the estimated mediation effect of 0.021 as 
the expected change in the outcome for a change of amount 
a in the mediator, where amount a is the exposure’s (ane-
mia versus nonanemia) effect on the mediator. This is an 
example of weak mediation because (1) the mediation effect 
of 0.021 is small, and (2) the anemia exposure has minimal 
effect on the mediator—an effect of 0.023 is only 2.3% of the 
distance between functional status levels. A strong media-
tion effect would have strong effects of both the exposure on 
the mediator and the mediator on the outcome.

As expected with continuous outcomes, the mediation 
effect estimated by the difference and product methods was 
the same (0.021) (although this might not hold if different 
variables or techniques were used to adjust for confound-
ing in equations [1]–[3]). For binary outcomes, this equality 
would not generally be the case—adjustments or alterna-
tive methods are required (see sections Extension 1: Binary 
Outcome with Single Mediator and Extension 2: Binary 
Outcome with Multiple Mediators).

Proportion Mediated
An attractive summary measure is the proportion of the total 
effect due to a speci!c mediator, estimated as the mediation 
effect divided by the total effect of an exposure on outcome, 
or a × b/c. This is a useful measure for individual mediators. 
When there are multiple mediators the ratio is not always 
easy to interpret, since mediation effects can go in different 
directions (see section Extension 2: Binary Outcome with 
Multiple Mediators).

For our example, given the estimated mediation effect  
(a × b = 0.021) and total effect (c = 0.211), the estimated pro-
portion of the total effect of anemia due to the mediator, 
functional status, is 0.021/0.21, or 0.10, about 10% (95% CI, 
9%–11% by bootstrap resampling).

REQUIREMENTS FOR CLAIMING MEDIATION
To claim that the effect of an exposure on outcome is at 
least partially mediated by a particular variable M, the 
most recent literature2,3,19,22 generally agrees on these 3 
requirements:

 1. Exposure X must affect mediator M. That is, coef-
!cient a in equation (3) must be found signi!cantly 
different from 0.

 2. Mediator M must affect outcome Y, independent of 
the exposure X. That is, coef!cient b in equation (2) 
must be found signi!cantly different from 0.

 3. Mediation effect must be signi!cant. Although evi-
dence of mediation can be claimed if both effects a 
(the exposure affects mediator, no. 1 above) and b 
(mediator affects outcome, no. 2 above) are signi!-
cant, it is more convincing if the mediation effect 
itself, the product a × b, is also signi!cantly different 
from 0. We and others thus make this a third require-
ment for claiming mediation.

In our companion paper example, the exposure ane-
mia was signi!cantly related to the proposed mediator, 

aIn practice one would probably not use linear regression when modeling 
functional status score since it is ordinal – more appropriate would be a 
cumulative logit model, for example. Here we use linear regression to keep 
things simple for demonstration purposes.
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functional status (requirement 1). In addition, functional 
status was related to HLOS after removing the direct effect 
of anemia on length of stay (requirement 2). Finally, the 
product of effects a and b was signi!cant (requirement 3). 
Since all 3 required criteria were signi!cant, we claim that 
some (a small portion) of the effect of anemia on HLOS goes 
through functional status.

The more traditional approach to claiming mediation had 
2 additional requirements, [Baron and Kenny 23] namely, 
that the total effect is signi!cant and that it is substantially 
larger than the direct effect. In Appendix 2, we explain why 
these are no longer considered required.

KEY ASSUMPTIONS IN MEDIATION ANALYSIS
1. Causal pathway
As mentioned, we assume that the mediator lies on the 
causal pathway between the exposure and outcome, such 
that the exposure causes the mediator and the media-
tor causes the outcome, as X → M → Y (Fig.  2, bottom). 
Besides the ordering, it is required that none of the arrows 
are bidirectional, for example, we assume that the media-
tor affects the outcome but not vice versa. In our example, 
we assume that length of stay would not affect presurgical 
functional status, and functional status would not affect 
anemia status.

2. Manipulable Exposure and Mediator
As explained above, based on a potential outcomes under-
standing of causal inference, both exposure and mediator 
should be at least theoretically manipulable as a minimal 
condition to be able to claim causal mediation. For a par-
ticular individual, potential values of the mediator at each 
value of the exposure, and potential values of the outcome 
at each possible value of the mediator, must be plausible to 
discuss the causal effects of the exposure on the mediator or 
the mediator on the outcome.

Based on the above, for example, could one claim causal 
mediation in an analysis assessing whether cholesterol 
mediates the relationship between a particular genotype 
and risk of a heart attack? Typically, baseline conditions 
such as demographics would not be considered manipu-
lable, although one might envision gene therapy or other 
sophisticated schemes to observe potential outcomes of the 
mediator or outcome from the same individual both with 
and without the exposure (e.g., the gene).

3. No Confounding
To claim causal mediation, we assume minimal or no 
confounding of the relationships between exposure and 
mediator(s), between exposure and outcome, or between 
mediator(s) and outcome.

We claim to have removed most of the potential con-
founding of the relationships between exposure and mediator 
(equation [3]) and between exposure and outcome (equation 
[2]) by using a randomized exposure. In nonrandomized 
studies, it is important to use either propensity-matched 
exposure groups (as in the companion paper example) or 
else to adjust for available preexposure confounding vari-
ables in equations (2) and (3). To the extent this has been 
done well, one considers discussing the “effect” of the 

exposure on the mediator and on the outcome, rather than 
just association.

However, additional steps must be taken to adjust for 
confounding of the mediator–outcome relationship in equa-
tion (2) to discuss the effect of mediator(s) on outcome. 
Exposure groups being either randomized or propensity 
matched does not remove confounding from the mediator–
outcome relationship. In some studies, the mediator variable 
can be randomized. A more practical solution is to adjust for 
all available preexposure potentially confounding variables 
when !tting equation (2), as done above in our reanalysis 
of the companion paper data, even when exposure groups 
are propensity matched. It is not appropriate to adjust for 
postexposure covariables, since they might be affected by 
the exposure and so adjusting for them would bias results. 
(Speci!cally, the mediation effect can be expressed as the 
effect of the mediator M on outcome Y as a result of the 
effect of exposure X on M [effect a]. Adjusting for a variable 
on the causal pathway between X and M when estimating 
the effect of M on Y [b in {2}] could remove some of the  
effect of X on M, thus biasing the mediation effect estimated 
as a × b.)b

4. No Interaction Between Exposure and 
Mediator on Outcome
We assume that the exposure and mediator have inde-
pendent effects on the outcome.2,24 However, this is easily 
assessed by including the appropriate exposure–mediator 
interaction term(s) into model (2).

An exposure–mediator interaction means that the effect 
of exposure on outcome depends on the observed level of 
the proposed mediator, and likewise the effect of mediator 
on outcome varies by level of the exposure. To the extent 
that there is an exposure–mediator interaction, and particu-
larly when the effects change direction (not just amount) for 
different levels of the other variable, the overall estimated 
mediation effects would not be very interpretable. This is 
not to say that mediation does not exist in such situations—
it is just more dif!cult to identify and describe. The expo-
sure–mediator interaction is a testable assumption and so 
should always be assessed.

In our companion paper example, the exposure–
mediator interaction was found to be signi!cant (t = 15.3,  
P < 0.001), implying that the effect of anemia on length 
of stay depends on functional status level, and the effect 
of functional status on outcome varies by anemia status. 
However, the interaction is one of degree and not of direc-
tion. For example, the anemia “direct effect” is positive for 
all levels of functional status (effect c′ =0.20, 0.40, 0.43 for 
functional status 1, 2, and 3, respectively), implying that 
anemic patients have longer mean length of stay for any 
level of functional status, although less so for the best func-
tioning patients. Likewise, the functional status effect on 
length of stay is positive for both anemia (b = 0.58) and 
nonanemia (b = 0.42) patients, although stronger for ane-
mia patients.

bNote that since mediation is typically assessed using the product method 
of a × b, it is particularly important to remove confounding from equations 
(2) and (3). This holds regardless of whether the outcome and mediator are 
continuous or binary variables.
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5. Usual Model Assumptions
Finally, the usual model assumptions for linear and/or 
logistic regression apply. For example, we assume observa-
tions are independent and that the functional form of the 
model !ts the data reasonably well (e.g., linear regression 
assumes a linear relationship). Missing data is more of an 
issue in mediation analysis than it usually is. Also, while 
some exposure–mediator correlation is required to claim 
mediation, too much exposure–mediator correlation can 
result in greatly increased SEs for the effect of the mediator 
on outcome (effect b in equation [2]), thus reducing power 
when assessing mediation.3

Given the above required assumptions, the reader can 
appreciate that it is quite dif!cult to con!dently claim 
mediation, even in studies with a randomized intervention. 
However, careful design and analysis can lead to stronger 
suggestions of mediation (or lack thereof). The following 
sections Extension 1 and Extension 2 are critical for those 
planning or conducting mediation analyses with binary 
outcomes. However, these sections are not crucial to the 
basic concepts of mediation analysis, which have been cov-
ered above.

EXTENSION 1: BINARY OUTCOME WITH SINGLE 
ORDINAL MEDIATOR
We use data from the companion paper to assess whether 
baseline functional status (levels 1, 2, and 3, with 3 being 
worst) is a mediator of the effect of anemia on 30-day mor-
tality, a binary outcome. With a binary (yes/no) outcome 
such as any of the 9 complication events in the companion 
paper, we cannot assess mediation using the simple total 
effect minus direct effect “difference” method (c minus 
c′) from equations (1)–(3). For a binary outcome, logistic 
regression is used for equations (1) and (2). Since the resid-
ual variance is !xed in logistic regression, the scale of the 
outcome variable is not the same across equations having 
different predictors, and therefore the equality between the 
difference method and the a × b “product” method which 
holds for linear regression no longer holds.2 Methods for 
assessing mediation with a binary outcome, particularly 
how to assess and express the mediation effect, is an active 
area of statistical research—that is, there is still is no gener-
ally accepted method. We therefore present >1 method for 
assessing mediation with binary outcomes, with the quali-
!cation that the jury is still out on the best or most accurate 
method.

MacKinnon et al.2 and others claim that if the outcome 
is binary and the mediator is continuous (or ordinal), 
choices are to !rst standardize the regression coef!cients 
and use the c minus c′ method, or else to approximate the 
mediation effect using the a × b “product” method, and 
then estimate the proportion mediated.2 We demonstrate 
both methods and compare results for our data example. 
For both approaches, we estimate con!dence intervals 
using bootstrap resampling21 since it is more reliable than 
the traditional Sobel method, particularly for nonnormal 
outcomes.2,25

More recently, some researchers have concluded that 
the above-mentioned approaches are not suf!cient to 
assess mediation effects (and particularly, to make causal 

inference on the mediation effects) when the outcome is 
binary. Imai et al.26 (2010) showed that when using the 
standardization method with a binary outcome, the pro-
portion of the total effect mediated by the mediator only 
accurately estimates the true proportion mediated when 
the direct effect is rather small relative to other effects. 
Thus, Imai at el.26 (2010) and others [e.g., Albert and 
Nelson 12] have proposed estimating mediation effects 
using the “potential outcomes” framework. In this frame-
work, mediation is de!ned as the expected difference in a 
subject’s potential outcomes at levels of the mediator that 
would result under one value of the exposure versus the 
other (complicated by the fact that only 1 potential media-
tor value and 1 potential outcome value is observable 
for a subject). For a continuous outcome, assuming there 
is no interaction between exposure and mediator on the 
outcome, the potential outcome and traditional methods 
would give the same results. Further details on this class 
of methods is beyond the scope of this article, but some 
form of this methodology may well represent the future of 
mediation analysis for both continuous and noncontinu-
ous outcomes.

We proceed with the goal of assessing whether any 
mediation is present in our example and also estimating 
the proportion of the total effect which is mediated by the 
chosen mediator. We use the product method (both stan-
dardized and nonstandardized), with the quali!cation that 
the estimates will only be approximate and should be inter-
preted with caution. We also apply the method of Imai et 
al.26 (2010) as a sensitivity analysis.

Since we have a binary outcome, we use logistic regres-
sion for equations (1)^ and (2)^ below so that effects b, c, 
and c′ are log-odds ratios, and p is the probability that the 
outcome of interest Y (here, 30-day mortality) is 1 (or yes) 
for a particular subject given their observed values of expo-
sure X and any other variables on the right side of the equa-
tion (i.e., M and/or covariates).

log (p/(1 − p)) = intercept + c X             + covariates  (1)^ 

log (p/(1 − p)) = intercept + 0.46 X        + covariates (1)^*

log (p/(1 − p)) = intercept + c′X + b M + covariates (2)^

log (p/(1 − p)) = intercept + 0.41 anemia  
       + 0.74 functional status + covariates (2)^ *

Using the traditional method, the total effect of anemia on 
mortality would be estimated as c = 0.46 (exponentiate to 
obtain odds ratio of 1.5 [95% CI, 1.4–1.7]). However, when 
the outcome is binary, the total effect cannot be reliably esti-
mated from c in (1)^*, but rather (according to some authors) 
by the sum of the estimated direct and indirect effects, or 
else by !rst standardizing, both of which are done below. 
The direct effect of anemia on mortality is estimated as c′ = 
0.41 (exponentiate to obtain odds ratio of 1.5 [1.4–1.6]) using 
equation (2)^*. We further estimate the effect of anemia on 
the mediator as a = 0.023 (0.021–0.025), that is, the difference 
in mean functional status for anemic versus nonanemic, as 
in (3)* above. Finally, we estimate the effect of the media-
tor on mortality adjusting for exposure as b = 0.74 (expo-
nentiate to obtain odds ratio 2.1 [1.9–2.3]) in (2)^*. We next 
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estimate the mediation (i.e., indirect) effects both with and 
without standardizing the effects estimated here.

Product Method—Unstandardized Effects
Since both effects a and b are signi!cant in our example, 
there is some evidence of mediation. This may be a more 
reliable !nding (given the above discussion) than the follow-
ing speci!c estimates of the mediation effect itself. Using the  
a × b method, the mediation (or indirect) effect is estimated 
as a × b = 0.023 × 0.74 = 0.0167 (95% CI, 0.01–0.02 by boot-
strap resampling), and is interpreted as the expected change 
in the log-odds of having the outcome for a change of 0.023 
(i.e., the change due to the exposure) in the log-odds of hav-
ing the mediator. The proportion of the total anemia effect 
explained by functional status is calculated as (a × b)/TE, 
where TE is the estimated total effect, calculated as the 
direct effect plus the mediation effect [as noted above, with 
a binary outcome, we do not rely on the estimated effect c to 
represent the total effect]. The estimated proportion of the 
total effect of anemia on mortality mediated by functional 
status is thus 0.0167/(0.41 + 0.0167) = 0.0167/0.4267 = 0.039, 
or about 4%.

Product Method—Standardized Effects
Using the standardization method detailed in Appendix 3 to 
account for the fact that outcomes are not on the same scale 
across equations, standardized estimates of the total effect 
(c) and direct effect (c′) are 0.256 and 0.226, respectively, 
for a difference of 0.030 to estimate the mediation effect. 
This estimate of the mediation effect is expectedly different 
from the results of the unstandardized a × b method in the 
preceding paragraph (0.0167) since results are on different 
scales. However, as shown in Appendix 3, we also obtain 
standardized estimates of effects a and b. Using the product 
method on those results, the standardized a × b mediation 
effect is estimated as 0.023 × 0.404 = 0.0092, which explains 
4% (95% CI, 2.8–4.5) of the total effect of 0.235 (a × b + c′ = 
0.0092 + 0.226 = 0.235), very similar to the nonstandardized 
a × b method above.

Potential Outcomes Method
Finally, we estimate the proportion of the total effect of 
anemia on mortality mediated by functional status using 
the potential outcomes method of Imai et al (applied 
using the “mediate” function in the R “mediation” pack-
age). This method begins with regression models (2)^ and 
(3) and then simulates potential outcomes under various 
scenarios of exposure and mediator values. The estimated 
potential outcomes are used to estimate the mediation 
effect overall and under both levels of exposure. Using 
this method, the percent of the total effect mediated by 
functional status (95% CI) was estimated as 8, (6–16), 
somewhat higher than what was found using the above 
product methods.

Finally, the interaction between the exposure (anemia 
status) and mediator (functional status) on outcome (mor-
tality) was not signi!cant (P = 0.11), ful!lling one of the 
requirements for claiming mediation. We conclude that 
there is a small percent of the anemia effect of mortality 
mediated by functional status.

EXTENSION 2: BINARY OUTCOME WITH MULTIPLE 
BINARY MEDIATORS
Anemia Study Example
In the companion paper, we assessed the association 
between presurgery anemic status (yes/no) and 9 pri-
mary outcomes, all of which were binary (yes/no) com-
plication events. For each outcome, we considered 6 
mediator variables, including 5 binary and 1 continu-
ous (i.e., duration of surgery). Outcomes were analyzed 
individually, reporting the “total effect” and “direct 
effect” (i.e., adjusting for mediators) of anemia on each 
outcome. We concluded that there was evidence of 
mediation when a direct effect was much smaller than 
a total effect, but we did not quantitatively assess the 
specific mediation effects. Here we assess the mediation 
effects from the companion paper in more detail. For 
simplicity, we change duration of surgery to a binary 
outcome defined as “1” if above 120 minutes and “0” 
otherwise; we thus consider 6 binary mediators. For the 
sake of interest, we add a 10th outcome of “any major 
complication”, defined as “1” if any of the 9 original 
outcomes were observed and “0” otherwise. (Note: 
Since the outcome Y is binary for this example, equa-
tions (1)^ and (2)^^ are fit using logistic regression [as 
done with a single binary outcome in Extension 1], not 
linear regression).

In the below analysis of the companion paper, we 
focus on estimating mediation effects separately for each 
mediator (for each outcome), as opposed to the overall 
proportion mediated or the total amount of mediation. 
Although with multiple mediators, the overall proportion 
mediated can be calculated as the sum of the individual 
mediation effects divided by the total effect; this is not 
a consistently reliable summary measure because differ-
ent mediation effects can tend to cancel each other out if 
in different directions, that is, some positive and some 
negative. Even if all effects are in the same direction, the 
overall proportion mediated may still not be a suf!cient 
summary measure because one would typically want 
to know which variables are responsible for the most 
mediation.

Multiple Mediator Analysis
Here we expand the methods discussed in section  
Extension 1 to the case of multiple mediators. All of the 
quali!cations expressed in that section apply here as well. 
When there are multiple mediators (say k), the equations 
used to assess mediation using the traditional approach 
are modi!ed as follows. Equation (2)^ above (for a single 
mediator) is expanded to include a term for each mediator, 
as in (2)^^ below, so that with k potential mediators (here, 
6) there are now k estimates of b (1 for each mediator)—that 
is, the effect of mediator on outcome, adjusting for all other 
mediators in addition to the exposure X. A separate equa-
tion (3) is !t for the effect of exposure on each mediator, as 
below, giving k estimates of parameter a (1 for each media-
tor). In equations (1)^ and (2)^^ below, p is the probability 
for a particular subject that Y = 1 given X, M, and covariates. 
We !t equations (1)^ (unchanged from above) and (2)^^ for 
each of the outcomes of interest.
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 log (p/(1 − p)) = intercept + c X + covs [as above] (1)^ 
 log (p/(1 − p)) = intercept + c′ X + b1 M1 + b2 M2  
      + b3 M3 + + + bk Mk + covs            (2)^^
E(M1) = intercept 1 + a1 X + covs (3.1)
E(M2) = intercept 2 + a2 X + covs (3.2)
E(Mk) = intercept k + ak X + covs (3.k)

To estimate the ratio of each speci!c mediation effect to the 
total effect of anemia on an outcome of interest, we gener-
alized the product method described in Extension 1 to the 
case of multiple mediators. This ratio is not a true propor-
tion because it can easily be negative (due to either nega-
tive speci!c mediation effects or negative sum of mediation 
effects) or greater than 1. Therefore, we refer to it as a ratio 
or a percent. Analogous methods have been used by others 
for continuous outcomes. First, for a given outcome variable 
(say 30-day mortality), the mediation effect for a particu-
lar mediator (say mediator 1) was estimated as the prod-
uct of a1 from equation (3.1) and b1 from equation (2)^^, 
or a1 × b1. This was done for all 6 proposed mediators for 
the given outcome, resulting in 6 mediation effects. Since 
all outcomes and mediators are binary, the speci!c media-
tion effects are the product of 2 log-odds ratios, that is, the 
effect of exposure on mediator (a) and effect of the mediator 
on outcome (b). These were summed across mediators to 
estimate the total mediation effect, or total indirect effect, 

as a bi i
i=
∑

1

6

.c We then estimated the total effect of anemia on 

30-day mortality (which we refer to as TE) as the sum of the 
total indirect effect and the direct effect estimated from c′ 
in equation (2)^^. Finally, we estimate the ratio of speci!c 
mediation effects to the total effect of anemia on the out-
come as the speci!c mediation effect divided by TE. As in 
section Extension 1, con!dence intervals were obtained via 
bootstrap resampling.

We also used this product method after standardizing 
the estimates a, b, and c′ in a method analogous to that 
shown in Appendix 3 for a single mediator. We !rst divided 
coef!cients a and b by the SD of the predicted outcome for 
the relevant equation and then used the product method as 
above. Standardized and nonstandardized results on the 

proportion of the total effect due to each proposed mediator 
were very similar (typically within 1–2 absolute percent of 
each other, data not shown).

Example. For the 30-day mortality outcome, Table 1 gives 
estimates of effects a and b and their product (i.e., the medi-
ation effect) for each of the 6 proposed mediators. For the 
open wound mediator, for example, effects a and b were 
estimated as log-odds ratios of 0.66 (95% CI, 0.61–0.70) and 
0.07 (−0.11 to 0.25), respectively, for a mediation effect (95% 
CI) of a × b = 0.05 (−0.07 to 0.16), nonsigni!cant because it 
contains 0. The sum of the mediation effects across media-

tors gave an estimate of a bi i
i

=
=
∑ 1 32

1

6

. . The estimate of c′ 

(direct effect) from equation (2)^^ was a log-odds ratio of 
0.28. The total effect TE was thus estimated as 1.32 (indirect 
effect) + 0.28 (direct effect) = 1.60. Finally, the speci!c/total 
ratio (or percent mediated) for each mediator (and 95% CI) 
was estimated as mediation effect divided by TE × 100 (last 
column of Table 1). For open wound, it was 2% (−13% to 
20%). All mediation effects in Table 1 except for the open 
wound mediator (row 1) are signi!cant at the 0.05 level 
since the 95% con!dence intervals do not contain 0.

As explained in Requirements for claiming mediation, medi-
ation can be claimed if both effects a and b as well as the 
mediation effect a × b are signi!cantly different from the 
null hypothesis value (0 on raw scale, 1 on odds ratio scale). 
For example, RBC transfusion appears to be a clear media-
tor of the anemia effect on mortality since the log-odds ratio 
(95% CI) for anemia status on RBC transfusion (effect a) is 
0.89 (0.85–0.93), the effect for RBC transfusion on outcome 
(effect b) is 0.94 (0.81–1.05), and the mediation effect (a × b) 
is 0.82 (0.71–0.94).

Mediation effects can be either positive or negative, 
depending on the signs of the a and b effects. When both a 
and b are negative, the mediation effect becomes positive. 
For example, anemia was associated with lower odds of 
independent functional status (a = log-odds ratio of −0.50), 
and independent functional status was associated with 
lower odds of mortality (b = log-odds ratio of −0.77), for a 
positive mediation effect of a × b = 0.38, Table 1.

For the 30-day mortality outcome, we also applied the 
potential outcomes method of Imai26 (2010) as described 
above. The ratio (or percent) mediated by each of the 6 
mediators was at least in the same ranking order as those 
reported in Table  1 for the product method, and some of 
them were almost identical (results not shown).

cAnother apparent option would be to de!ne the total indirect effect as the 
sum of the absolute values of the speci!c indirect effects, with the advantage 
that indirect effects in opposite directions would not cancel each other out 
when summarizing the relative contribution of a speci!c mediator. However, 
using the raw indirect effects (as we have done) allows the total indirect effect 
to represent the net mediation effect across mediators.

Table 1.  Specific Mediation Effects on the Mortality Outcome—Companion Paper Data

Mediator
Effect a  

exposure on mediatora
Effect b  

mediator on outcomea
a × b  

mediation effecta

Ratio (× 100) of  
specific mediation  

effect to total effectb

1. Open wound 0.66 (0.61 to 0.70) 0.07 (−0.11 to 0.25) 0.05 (−0.07 to 0.16) 2 (−13 to 20)
2. RBC transfusion 0.89 (0.85 to 0.93) 0.94 (0.81 to 1.05) 0.82 (0.71 to 0.94) 54 (40 to 61)
3. Dyspnea 0.11 (0.09 to 0.13) 0.54 (0.43 to 0.64) 0.06 (0.04 to 0.08) 5 (2 to 8)
4. Wound contamination −0.07 (−0.08 to −0.05) −0.49 (−0.59 to −0.39) 0.03 (0.02 to 0.04) 3 (2 to 4)
5. Independent functional status −0.50 (−0.55 to −0.46) −0.77 (−0.90 to −0.64) 0.38 (0.31 to 0.45) 26 (19 to 36)
6. Duration of surgery > 2 h −0.04 (−0.06 to −0.03) −0.27 (−0.41 to −0.13) 0.01 (0.00 to 0.02) 0 (0 to 1)

Con!dence intervals estimated using bootstrap resampling with 500 resamples
aEstimated effects are on the log-odds ratio scale.
bRatio calculated as 100 × ([speci!c mediation effect a × b]/total effect), where total effect is sum of all mediation effects (i.e., sum of a × b column) and the 
direct effect c′ estimated from equation (2)^^. 
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Table 2 reports the estimated total and direct effect of ane-
mia on each outcome, as well as the estimated ratio (X 100) 
of speci!c mediation effect to total effect for each media-
tor. The !rst column gives the “naïve” total effect estimated 
from equation (1)^, reported for information purposes only. 
Column 2 gives the total effect (TE) estimated (as explained 
above) as the sum of the direct effect c′ from equation (2)^^ 
and the total of the mediation (or indirect) effects using the 
product method (from equations [2]^^ and [3]).

For example, an estimated 40% (95% CI, 37–45) of the 
total effect of anemia on systemic complications was medi-
ated by RBCs, 24% (20–28) by open wound, 22% (18–25) by 
functional status, and trivial amounts by dyspnea, wound 
contamination and duration of surgery (Table 2). Receiving 
any RBCs appeared to be a consistent mediator of the effect 
of anemia, explaining between 25% and 55% of the total 
effect of anemia on each of the 10 outcomes (see section 
Exposure–mediator interactions below for an important 
quali!cation). Open wound was found to explain at least 
20% of the total anemia effect in 5 of the 10 outcomes, while 
functional status explained at least 20% in 7 of 10 outcomes. 
The other suspected mediators, dyspnea, wound contamina-
tion and duration of surgery, were not found to substantially 
contribute to the effect of anemia on outcome (all< 10%).

Interestingly, Table 2 shows that duration of surgery> 2 
hours (last column) was not an important mediator of ane-
mia for any of the outcomes of interest. This is because for the 
mortality outcome (see Table 1) and most others, although 
duration of surgery had a nontrivial association with out-
come (effect b), the effect of anemia on duration of surgery 
(effect a) was almost 0. Therefore, the mediation effect, esti-
mated as the product of a and b, was very close to 0.

Exposure–Mediator Interactions
An important part of any mediation analysis is assessing 
the exposure–mediator interaction(s). In the traditional 
mediation analysis, this is assessed by adding an interaction 
term into equation (2) (or its variants). From a signi!cant 
interaction, we conclude that the effect of the mediator on 
outcome is not consistent across levels of the exposure, and 
vice versa, so that the “difference” and “product” estimates 
of the mediation effect from the traditional approach would 
no longer be appropriate.

Interaction P-values for the companion paper reanalysis 
are reported in Table 3A. Most interactions were nonsigni!-
cant, but for 6 of the 10 outcomes, the anemia–RBC interac-
tion was signi!cant at P < 0.01. The corresponding estimated 
log-odds ratios for the anemia–RBC interaction effects 
ranged between −0.13 and 0.42, all negative (Table 3B). In 
these models, the effect of the mediator on outcome (i.e., 
receiving RBCs associated with increase complications) is 
somewhat stronger for nonanemic than for anemic patients, 
although in the same direction for both. However, the ane-
mia effect on outcome tends to be positive (associated with 
more complications) for those without RBC transfusion and 
negative (associated with less complications) for those with 
RBC transfusion (data now shown).

Since the anemia and RBC effects on these 6 outcomes 
were not consistent across levels of the other variable 
(RBC effect within levels of anemia, and vice versa), a Ta
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mediation analysis as described above is not cleanly inter-
pretable for this proposed mediator. Instead, the relation-
ship may be best described as an interaction between 
anemia and RBC transfusion on outcome. However, the 
potential outcomes method of assessing mediation intro-
duced above is more "exible and can be used to estimate 
mediation effects for each level of the exposure (beyond 
the scope of this paper).

Sample Size Considerations
Since our minimal de!nition of mediation requires an asso-
ciation between the exposure and the mediator as well as 
between the mediator and the outcome, sample size can 
be calculated to assure adequate power to detect both of 
these alternative hypotheses. One would then choose the 
larger sample size for these 2 hypotheses. Hypothesis-
speci!c power must be adequate to account the fact that 
both hypotheses must be signi!cant. For example, assum-
ing independent tests, an overall power of P is achieved by 
using a power of P  for each test (i.e., use 0.949 to maintain 
0.90 overall power). Since both tests are required to be sig-
ni!cant (i.e., this is an intersection-union joint hypothesis 
test), no Bonferroni correction is needed to the signi!cance 
criterion for each.

Power for the mediator–outcome relationship in 
equation (2) is reduced to the extent that exposure and 
mediator are correlated. The effective sample size for 
linear regression will be N* = N (1 − rxm),2 where N is 
the required sample size ignoring the correlation, and 
rxm is the correlation between X and M. Sample size for 
the mediator–outcome relationship is thus N/(1 − rxm),2 

where 1/(1 − rxm)2 is the variance in"ation factor in linear 
regression to adjust for loss of precision due to adjust-
ment for exposure X. Similar adjustments can be made 
for binary outcomes and other types.27

We present an example using a continuous mediator 
and outcome. Suppose investigators believe that an expo-
sure (new drug versus placebo) decreases the mean of an 
intraoperative mediator, say, a particular cytokine, by 0.4 
SDs or more. With power of 0.949 and α of 0.05, a total of 
324 patients are needed for the exposure–mediator relation-
ship (i.e., effect a). In addition, the investigators expect the 
mediator to be correlated with the continuous outcome and 
would consider correlations of 0.25 or more to be clinically 
relevant. Thus, with power of 0.949 and α of 0.05, a total 
of 200 patients are initially calculated for the mediator–
outcome relationship (i.e., effect b). However, after incorpo-
rating an expected correlation of 0.5 between exposure and 
mediator, a sample size of 200/(1 − 0.52) = 267 is required for 
effect b. The study is planned for the larger of the 2 sample 
sizes, or N = 324.

More complex approaches involve directly estimating 
the mediation effect size of interest based on the product 
a × b or else the ratio of mediation effect to total effect (a × 
b/total effect) and then calculating the sample size to detect 
it with the desired power. Standardized effect sizes such as 
ab/(σx σy) are also attractive since they describe the media-
tion effect on the SD scales.28

DISCUSSION
While comparative research typically focuses on whether 
or not a particular intervention affects outcome, mediation 

Table 3A. Exposure–Mediator Interaction Effect P-Values—Companion Paper Data
Outcome  
complication Open wound RBCs Dyspnea

Wound  
contamination

Independent  
function

Surgery  
> 2 h

Systemic 0.64 <0.001 0.71 0.46 0.19 0.001
Respiratory 0.50 <0.001 0.99 0.25 0.35 0.004
Wound Infection 0.009 0.64 0.022 0.26 0.18 0.98
Urinary 0.28 0.16 0.89 0.10 0.25 0.16
CNS 0.65 0.83 0.35 0.03 0.02 0.48
Thrombotic 0.36 0.02 0.17 0.005 0.76 0.88
Cardiovascular 0.49 0.003 0.41 0.72 0.31 0.21
Return to OR 0.02 <0.001 0.59 0.52 0.52 0.58
Mortality 0.10 0.005 0.054 0.54 0.33 0.38
Any 0.77 0.002 0.41 0.77 0.91 0.06

P-values assessing the interaction between each mediator (columns) and outcome (rows) separately. Corresponding interaction effects given in Table 3B.

Table 3B. Exposure–Mediator Interaction Effect Estimates—Companion Paper Data
Outcome  
complication Open wound RBCs Dyspnea

Wound  
contamination

Independent  
function Surgery > 2 h

Systemic 0.05 (0.10) −0.26 (0.07) 0.02 (0.07) −0.04 (0.06) 0.12 (0.09) −0.19 (0.06)
Respiratory 0.08 (0.12) −0.37 (0.07) 0.001 (0.06) 0.07 (0.06) 0.08 (0.09) −0.07 (0.06)
Wound Infection −0.20 (0.08) −0.03 (0.06) −0.12 (0.05) 0.05 (0.04) 0.10 (0.08) 0.001 (0.04)
Urinary −0.13 (0.12) −0.11 (0.08) −0.01 (0.07) 0.09 (0.06) 0.11 (0.09) −0.08 (0.06)
CNS 0.14 (0.32) 0.04 (0.19) 0.16 (0.17) −0.29 (0.14) 0.52 (0.22) −0.10 (0.14)
Thrombotic 0.20 (.22) −0.27 (0.12) −0.16 (0.11) −0.26 (0.09) 0.05 (0.16) 0.01 (0.10)
Cardiovascular −0.14 (0.20) −0.42 (0.14) −0.11 (0.13) 0.04 (0.11) −0.19 (0.19) −0.16 (0.12)
Return to OR 0.17 (0.08) −0.23 (0.06) −0.03 (0.05) −0.03 (0.04) −0.05 (0.08) −0.02 (0.04)
Mortality −0.29 (0.17) −0.34 (0.12) −0.20 (0.10) −0.06 (0.10) 0.12 (0.13) −0.09 (0.10)
Any −0.05 (0.03) −0.13 (0.04) −0.03 (0.03) −0.007 (0.03) −0.006 (0.05) −0.05 (0.03)
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analysis goes further and asks how, or by what mecha-
nism. Since most researchers do hypothesize 1 or more 
mechanisms when designing a study, mediation analysis 
has strong implications for perioperative medicine—from 
reanalyzing previous studies in which mediation analysis 
was not considered to designing new studies with a pri-
mary or secondary goal of understanding the mechanism(s) 
of the intervention of interest. Mediation analysis can also 
be useful for planning future studies in which an identi!ed 
mediator is manipulated to maximize the effect of an inter-
vention. For example, if in an observational study lower 
cytokine levels are found to explain much of the effect of 
a particular steroid on postoperative outcomes, a prospec-
tive study might try to manipulate cytokine levels by addi-
tional means to further improve outcomes after steroid use. 
The availability of large databases with rich sets of baseline 
covariables creates an environment for these analyses to be 
feasible. Finally, in perioperative medicine, there is often >1 
suspected mechanism, and mediation analysis facilitates 
estimation of the relative contribution of each factor to the 
total effect of an intervention.

In this paper, we applied the traditional 3-equation 
approach to mediation analysis of Mackinnon2 and Barron 
and Kenny23 to continuous outcomes and mediators as well 
as for binary outcomes and mediators. Using data from a 
companion paper studying the relationship between preop-
erative hematocrit and outcomes1 we expanded the 3-equa-
tion approach to multiple mediators and a binary outcome. 
For continuous outcomes and mediators, methods for 
assessing mediation are fairly straightforward and clear. As 
we explained, there is still no agreement in the literature on 
the best way to assess mediation effects when the outcome 
and/or mediator is binary. We therefore used several com-
peting methods and obtained generally consistent results. 
Even so, for the binary outcomes, our estimates of media-
tion effects and proportion mediated should be considered 
only rough approximations.

We analyzed a set of 10 binary outcomes one at a time. 
Alternatively, for example, path analysis via structural 
equation models can be used to assess more complex rela-
tionships between exposures, mediators, confounders, and 
outcomes,2 typically using LISREL,29 Mplus,30 or EQS31 
covariance structure programs. In these models, media-
tors may be temporally separated, and 1 mediator may be 
assumed to cause another. Multiple dependent variables, 
such as in the companion paper, can be included simul-
taneously in a comprehensive system of equations which 
accounts for the covariances among all variables. Design 
and interpretation of such analyses rely on substantial 
clinical and biological input and should not be treated as 
a “black box”.

As we introduced, mediation can be most clearly de!ned 
using the potential outcomes framework, which assumes 
underlying potential responses to each level of treatment 
and mediator.13,14,16,19 Mediation is then the average differ-
ence between the potential outcomes that would result for 
a patient under the value of the mediator if treatment had 
been received versus under the value of the mediator if 
treatment had not been received. The dif!culty, of course, is 
that we only observe 1 exposure condition on a patient, and 

only 1 mediator value, yet we want to make causal infer-
ence on the mean effects for both exposure on mediator and 
mediator on outcome (thus, the fundamental problem of 
causal inference15 is magni!ed).

For any method of assessing mediation, to approach 
causal inference, we need to remove confounding from each 
of the exposure–mediator, exposure–outcome, and media-
tor–outcome relationships. In the present reanalysis of the 
companion paper data, for example, not only were the ane-
mia and nonanemia exposure groups propensity-matched 
on a host of baseline confounding variables (as in the origi-
nal study), but also the same variables were again adjusted 
for when assessing the mediator–outcome relationships. 
Although not directly testable, sensitivity analyses can 
assess how strong an unmeasured confounder would need 
to be to have affected the conclusions.32,33

Direct and indirect effects in mediation analysis can 
be either “controlled” or “natural”, both of which may 
be of interest, depending on the situation.11 A controlled 
direct effect compares the exposure groups on outcome 
at a !xed level of the mediator, which is the same for all 
patients. A natural direct effect compares the exposure 
groups on outcome at the level of the mediator that would 
be observed for a particular subject at the given value of 
the exposure, thus allowing the value of the mediator 
to be subject speci!c. A similar distinction can be made 
for the indirect, or mediation, effects. For a continuous 
outcome variable, the controlled and natural effects are 
the same, as long as there is no exposure–mediator inter-
action. For binary outcomes, 2-stage regression or other 
approaches are needed to estimate natural direct and 
indirect effects.12,19

Identi!cation of potential mediators is particularly chal-
lenging when the exposure of interest is a chronic condition 
as opposed to an acute or intraoperative intervention. For 
chronic exposures, it may not be clear whether the exposure 
or the proposed mediator typically occurs !rst in a patient. 
Further, to claim mediation in the causal sense, both the 
exposure and the mediator variables need to be at least the-
oretically manipulable, or modi!able. This is a questionable 
assumption for exposures which are chronic conditions, 
such as diabetes, but reasonable for factors such as smoking 
status and intraoperative interventions.

The proportion of the total effect due to a speci!c 
mediator is an attractive summary measure in mediation 
analysis. However, since individual mediation effects 
can be either positive or negative, this “proportion medi-
ated” can also be negative. Therefore, it is better termed a 
ratio—of individual mediation effect(s) to the total effect. 
Since positive and negative mediation effects can offset 
each other, it is also possible that the total effect can be 
smaller than a particular speci!c effect so that the speci!c-
to-total ratio can be larger than 1.0. Another option might 
be to summarize the total mediation effect as the sum of 
the absolute values of the speci!c mediation effects, as 
opposed to the sum of the raw values. A drawback of that 
approach, though, is that the total mediation effect would 
no longer represent the net mediation effect. A current 
area of research in mediation analysis is to identify the 
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most useful and reliable summary measures for mediation 
analysis, particularly when there are multiple mediators.

Inconsistent mediation occurs when at least one mediated 
effect has a different sign than the direct effect (or another 
mediation effect). For example, an exposure might directly 
increase values of the outcome variable (i.e., positive direct 
effect). The same exposure might decrease values of a media-
tor (negative effect a), and higher values of the mediator 
might increase the outcome variable after adjusting for the 
exposure (positive effect b), for a negative mediation effect 
(i.e., product of a positive and negative is negative). In such 
a case, the direct and mediation effects might tend to cancel 
each other out, resulting in a small (or even 0) total effect 
(i.e., sum of direct and mediation effects).10

Alternatively, reverse mediation refers to situations when 
the outcome variable might cause the mediator, instead of 
vice versa. Ideally, a researcher would be fairly con!dent 
about the direction of potential causality between a media-
tor and outcome (i.e., mediator causing outcome), including 
the temporal sequence of events. However, such information 
is not always available, making conclusions more tenuous.

Finally, sometimes a fourth variable may affect the tra-
ditional exposure–mediator–outcome relationship, in the 
form of either “moderated mediation” or “mediated mod-
eration”.2,23,34,35 Moderated mediation occurs when there is no 
overall interaction effect between the exposure and the fourth 
variable, but mediation occurs particularly within levels of 
fourth “moderating” or “interacting” variable. However, 
mediated moderation occurs when there is an overall interac-
tion effect of exposure and a fourth variable on outcome, and, 
for example, people of different combinations of exposure 
and the interacting variable have different levels of a media-
tor, thus explaining a difference in the outcome.

In conclusion, mediation analysis is a valuable tool for 
identifying the mechanisms for why an intervention may 
or may not affect an outcome of interest and the relative 
strength of those mechanisms. Careful design and analysis 
of more studies to assess mediation and mechanism will be 
a practical step in furthering the march of science in periop-
erative medicine. E

APPENDIX 1. SOBEL METHOD FOR CALCULATING SE OF MEDIATION 
EFFECT
Using the multivariate delta method, the Sobel SE of the 
mediation effect20 for a single mediator can be expressed as
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where t t ba b b= =a/se  ,  /sea , a is effect of exposure on medi-
ator, b is effect of mediator on outcome adjusting for expo-
sure, m = mediation effect = a × b, and  are the SEs for effects 
a and b, respectively. Estimates of a (0.023) and b (0.093) and 
their SEs (0.001, 0.011, respectively) from regression models 
(2) and (3) are plugged into equation (A1) to estimate the 
mediation SE. This method can be easily extended to mul-
tiple mediators with a continuous outcome.

APPENDIX 2. TRADITIONAL REQUIREMENTS FOR CLAIMING 
MEDIATION
We stated in the section Requirements for Claiming 
Mediation that contemporary guidelines for claiming medi-
ation include:

 1. Intervention affects the mediator (effect a in (1) is 
signi!cant)

 2. Mediator affects the outcome adjusting for the effect of 
intervention on outcome (effect b in (2) is signi!cant)

 3. The mediation effect is signi!cant (for example, a × b ≠ 0)

The more traditional approach to claiming media-
tion had 2 additional requirements, [Baron and Kenny 23] 
namely, that the total effect is signi!cant and that it is larger 
than the direct effect. Here we explain each and discuss why 
they are no longer considered generally required:

 4. Total effect of X on Y must be nonzero (i.e., c in (1) ≠ 0). 
On the one hand, it makes sense that we cannot dis-
cuss mediation of the effect of X on Y without hav-
ing a signi!cant marginal effect of X on Y. However, 
multiple mediation effects, either observed or non-
observed, may cancel each other out and lead to an 
overall effect of X on Y which is 0. Therefore, many 
authors (including ourselves) do not require a signi!-
cant total effect. However, with a single mediator, it 
would generally follow that the total effect would be 
signi!cant if both a and b were signi!cant.

 5. The direct effect of X on Y (controlling for M) must 
be smaller than the total effect of X on Y (i.e., c′ in 
[2] must be smaller than c in [1]). Some had gone fur-
ther to insist that the direct effect had to be nonsigni!-
cant, thus implying a complete mediation effect (i.e., 
mediator explains all of effect of X on Y).23 In a single 
mediation model with effects a and b in the same 
direction, it makes sense to expect the direct effect 
to be at least smaller than the total effect. However, 
especially in models with multiple mediators, which 
might have effects in different directions, this require-
ment is relaxed.

APPENDIX 3: STANDARDIZED ESTIMATES OF MEDIATION EFFECTS
We use the companion paper data to assess whether 
baseline functional status mediates the effect of anemia 
on 30-day mortality. With a binary outcome, we can-
not assess mediation using the simple total effect minus 
direct effect method (c minus c′) since the outcome vari-
ables are on different scales for the various equations. 
Choices are to approximate the mediation effect using 
the a × b method or first standardize the regression 
coefficients and then use either the c minus c′ method 
or the a × b method. The latter method is preferred and 
most generalizable. Below we compare results using all 
3 methods.

Variables are as follows: Y = mortality (1 = Yes, 0 = No); 
X = anemic status (1 = Yes, 0=No); M = Functional status  
(1 = independent, 2 = somewhat independent, 3 = dependent).

We !rst !t equations (1) to (3) with the following estimates
Total effect c = 0.46 (odds ratio 1.5 (95% CI 1.4–1.7)
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 Direct effect of anemia on mortality as c′ = 0.41 (odds ratio 
1.5 (1.4–1.6)

Effect of anemia on mediator (functional status),  
a = 0.023 (0.021–0.025)

Effect of mediator on mortality, adjusting for mediator,  
b = 0.74 (odds ratio 2.1 (1.9–2.3)

1. Nonstandardized product (a × b) method
In the product method, the mediation (or indirect) 

effect is estimated as a × b = 0.023 × 0.74 = 0.0167 (95% CI, 
0.01–0.02). Proportion of the total effect explained by func-
tional status is (a × b)/TE, where TE is the estimated total 
effect, calculated as the direct effect plus the mediation 
effect (i.e., c′ + a × b). The proportion of the total effect of 
anemia on mortality mediated by functional status is esti-
mated as 0.0167/(0.41 + 0.0167) = 0.0167/0.4267 = 0.039, 
or about 4%.

2. Standardized coef!cient method
We standardize 36 coef!cients c (from equation [1], and 

c′ and b (from equation [2]) by dividing by the variance of 
Y in their respective equations (Steps 1–3) and then assess 
mediation effects (Step 4).

Step 1. Estimated variance of Y for equation (1) is 
ˆ ( ) ˆ ˆ /σ σ2 2 2 21 3Y Xc= + π   where σ̂ 2

X is the estimated variance of 
X and  =3 14159.π .
Plugging in the companion paper estimates, we have

ˆ ( ) ˆ ( ) . . /σ σ πY Y1 1 0 46 0 093 32 2 2 2= = × +   =  1.813

Step 2. Estimated variance of Y for equation (2) is: 
ˆ ( ) ˆ ˆ ˆ ’ ˆˆ ’ ˆ /σ σ σ ρ π2 2 2 2 2 22 2 3Y M X XMb c bc= + + + where σ̂ 2

Xand σ̂ M
2  are 

estimated variances of X and M, ρ̂XMis the X-M correlation 
and π=3 14159.
Plugging in the companion paper estimates, we have:

ˆ ( ) ˆ ( )
. . . .

. . .
σ σY Y2 2

0 74 0 24 0 41 0 093

2 0 74 0 41 0 0472
2

2 2 2 2

= =
× + × +

× × × ++ π 2 3/
 

                           = 0.2262 

Step 3. Use above estimates to standardize c (total effect), c' 
(direct effect), b and their standard errors, as:

Standardized 4638 1 813 2558c = =0 0. / . .
Standardized SE of 45 1 813 248c = =0 0 0 0 0. / . .
Standardized 4122 1 822 2262c’ = =0 0. / . .
Standardized SE of 462 1 822 254c’ = =0 0 0 0. / . .
Standardized 7361 1 822 4 4b = =0 0 0 0. / . .
Standardized SE of 521 1 822 286b = =0 0 0 0. / . .

Effect a from equation (3) does not need to be standard-
ized since linear regression.

Step 4. Estimate standardized meditation effects:

 A. Difference method:
  Mediation effect c − c′ = 0.2558 − 0.2262 = 0.0296
  Proportion mediated = 0.0296/0.2558 = 0.12, or  

about 12%.
 B. Product method:

  Mediation effect (i.e., indirect effect) = a × b = 0.0227 × 
0.4040 = 0.00917

  1)  Total effect using indirect + direct = a × b + c′ = 
0.00917 + 0.2262 = 0.2354Proportion mediated =  
a × b/total effect = 0.00917/0.2354 = 0.041, or  
about 4%

    We obtained a bootstrap con!dence interval of 4% 
(2.8%–4.5%).

The standardized a × b mediation effect is thus estimated 
as 0.023 × 0.404 = 0.0092, which explains 4% (95% CI, 2.8–
4.5) of the total effect, very similar to the nonstandardized  
a × b method above.

Reasonable results can also be obtained by using the 
product method with standardized c as estimate of total 
effect, as below:
  2)  Total effect using standardized c = 0.2558.Proportion 

mediated = a × b/c = 0.00917/0.2258= 0.026,  
about 3%
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