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Composite endpoints consisting of several binary events, such as distinct perioperative
complications, are frequently chosen as the primary outcome in anesthesia studies (and in
many other clinical specialties) because (1) no single outcome fully characterizes the disease or
outcome of interest, and/or (2) individual outcomes are rare and statistical power would be
inadequate for any single one. Interpreting a composite endpoint is challenging because
components rarely meet the ideal criteria of having comparable clinical importance, frequency,
and treatment effects. We suggest guidelines for forming composite endpoints and show
advantages of newer versus conventional statistical methods for analyzing them. Components
should be a parsimonious set of outcomes, which when taken together, well represent the
disease of interest and are very plausibly related to the intervention. Adding components that
are too narrow, redundant, or minimally influenced by the study intervention compromises
interpretation of results and reduces power. We show that multivariate (i.e., multiple
outcomes per patient) methods of analyzing a binary-event composite provide distinct
advantages over standard methods such as any-versus-none, count of events, or evaluation of
individual events. Multivariate methods can incorporate clinical importance weights, com-
pensate for events occurring at varying frequencies, assess treatment effect heterogeneity, and
are often more powerful than alternative statistical approaches. Methods are illustrated with
an American College of Surgeons National Surgical Quality Improvement Program registry
study that evaluated the effects of smoking on major perioperative outcomes, and with a
clinical trial comparing the effects of crystalloids and colloids on major complications. Sample
data files and SAS code are included for convenience. (Anesth Analg 2011;112:1461–71)

In comparative research of many specialties, including
anesthesiology and perioperative medicine, the pri-
mary outcome is often a composite endpoint consist-

ing of various binary events such as distinct major
postoperative complications. Composites are typically
chosen for 2 reasons: (1) they capture the disease of
interest better than any single outcome, and (2) they are
expected to increase power. Composite outcomes are
particularly useful for diseases that are manifested in
complex ways, and also those with unknown etiologies
and thus no consensus on the most important efficacy
endpoint.1 Individual events such as major complica-
tions are often (happily) quite rare. Combining 2 or more

usually increases the overall outcome incidence, thus
improving power compared with a single outcome. Our
goal in this article is to assist researchers in design and
analysis of studies using composite endpoints.

Choice of the specific components for a composite is of
paramount importance to a study’s design and the inter-
pretation of results, yet a consistent practice based on
specific recommendations for how to formulate a compos-
ite is lacking.2 For example, components should ideally
have the same severity, frequency, and treatment effect in
order for the composite endpoint and treatment effects on
it to be easily interpreted. However, these criteria are rarely
met.3–6 In the “Forming a Composite Endpoint” section
below, we therefore review these and other specific guide-
lines for choosing the components of a composite endpoint.

Additionally, the choice of statistical methods has
important implications for both power and interpreta-
tion of results. Standard approaches include comparing
groups on the collapsed composite of any-versus-none,
the count of events, or individual component analyses.
Newer multivariate (i.e., multiple outcomes per patient)
methods7–10 allow more flexibility by incorporating clini-
cal severity weights, preventing the composite from
being driven by the highest frequency component, and
assessing the consistency of treatment effects across
components. We show advantages of the newer statisti-
cal methods over standard choices in the “Methods for
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Analyzing a Binary-Event Composite Endpoint” section,
and discuss “Factors Affecting Powers of Tests for a
Binary-Event Composite Endpoint.” Sample data are
taken from a study of the effects of smoking on periop-
erative outcomes and a randomized trial of crystalloids
versus colloids on postoperative complications.

FORMING A COMPOSITE ENDPOINT
A good composite endpoint should well capture the disease
or health state of interest. For example, serious cardiac mor-
bidity in a !-blocker trial is often assessed using a composite
endpoint of all-cause mortality, myocardial infarction, and
stroke. Investigators in the National Institute of Neurological
Disorders and Stroke rt-PA stroke trial chose 4 neurological
scales that were deemed by a panel of experts to best capture
a patient’s neurological status when taken together.11 Periop-
erative medicine interventions are often expected to affect
several organ systems or disease areas; a clear specification of
the target of the intervention is thus a good first step in
choosing the most appropriate outcome components. For
example, for an intervention targeted at reducing surgery-
induced inflammation, the composite might consist of several
inflammation-related complications. Thoughtful and in-
formed choices must be made, which include refraining from
a composite that is too wide or from using the same composite
across multiple studies unless truly appropriate.

Second, each component should be very plausibly affected
by the intervention. Although true effects are of course
unknown in advance, components should not generally be
added to a composite “just in case” there is an effect. As
shown later, including components that are only minimally
(or not at all) affected by the exposure usually reduces power,
and components with opposite effects certainly do.4,12 Thus, a
well-supported biological rationale should accompany each
chosen component. Choosing components highly likely to be
affected thus facilitates interpretation of the composite out-
come and usually improves statistical power.

Third, the set of components should be parsimonious. For
example, detailed disease categories, such as various types of
serious infection, can often be combined into a single compo-
nent. Such parsimonious categorization makes the composite
endpoint easier to interpret. It also increases power because
greater incidence will be available for analysis of the indi-
vidual components, if performed. And finally, fewer indi-
vidual component tests will be needed, thus reducing the
adjustment required for multiple comparisons. However,
caution must be taken not to combine categories that differ
substantially in severity, such as superficial skin and deep
sternal wound infections. As discussed below, compo-
nents with very different severities should not usually be
included in the same composite.

A related goal is that components should tend to be
moderately correlated. Choosing components that are too
similar (and thus very highly correlated) may mean that
some of them are redundant with each other, whereas near
zero correlation for most pairs of components would call
into question the cohesiveness of the composite endpoint
and may make interpretation difficult.

Finally and perhaps most importantly, components of a
composite should ideally have the same severity, fre-
quency, and treatment effect.5,6,13–16 For example, a good

composite might include only postoperative complications
deemed to be serious in the average patient, expected to
occur with similar frequency, and similarly affected by
intervention. When these guidelines are not met, as is often
the case, it is more difficult to interpret both the composite
endpoint and overall treatment effect on it.5,13,14 An impor-
tant caveat is that if all components are equally important,
differing frequencies and heterogeneous treatment effects
do not really matter.4 For example, a patient would likely
choose treatment A over B regardless of which 2 complica-
tions were reduced by A, and regardless of their frequen-
cies, as long as they were equally severe. In practice,
however, equal severity across components is rare.

Differing severities and frequencies are also problematic
because common statistical methods allow treatment effect
estimates and tests to be driven by higher-frequency com-
ponents. This is of special concern when higher-frequency
components are less important than others and treatment
effects also differ.6,14,17 Heterogeneous treatment effects
across the components of a composite, for example, reduc-
tions of 0%, 10%, and 50%, further complicate the interpre-
tation of the overall treatment effect.

In the next section, we compare various statistical ap-
proaches for analyzing a binary-event composite endpoint,
focusing on ways that modern methods can help with the
challenges discussed above.

METHODS FOR ANALYZING A BINARY-EVENT
COMPOSITE ENDPOINT
Choice of statistical method is an important part of design-
ing a composite endpoint study because various methods
provide different power, depending on the situation (see
the section “Factors Affecting Powers of Tests for a Binary-
Event Composite Endpoint” below). Available methods
also differ in their interpretation and flexibility. Here, we
describe and compare main features of “Standard Meth-
ods” and “Multivariate Methods” (both below). We show
that multivariate methods are more flexible than standard
methods, enabling them to help with problems of unequal
severity and frequency, and to assess treatment effect
heterogeneity across components. Throughout, we refer to
a “global” or “overall” test as one that assesses the treat-
ment effect across the entire composite endpoint, rather
than evaluating individual components. We begin with an
illustrative data example, the Smoking study.

Illustrative Example #1
In the “Smoking and Perioperative Outcomes” study,18

Cleveland Clinic investigators assessed the association be-
tween smoking status and a composite of major postoperative
complications using data from the American College of Sur-
geons National Surgical Quality Improvement Program19

from 2006 to 2008. The 82,304 patients who reported smoking
in the past year (“current smokers”) were compared with
82,304 propensity matched20,21 patients who reported having
never smoked (“never smokers”) on a vector of 13 major
complications (Fig. 1). The composite was purposely wide
because smoking affects many organ systems, both within
and across patients. Results showed that current smokers
were more likely to have major complications than never
smokers. Throughout this article, methods for analyzing
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composite endpoints are illustrated and compared using
the “Smoking study” (with data provided in Supplemental
Digital Content 1, http://links.lww.com/AA/A258). All
analyses were performed adjusting for age, which was still
slightly imbalanced between current and never smokers
after propensity score matching.

Standard Methods
Frequently used methods include comparing groups on the
collapsed composite of “any event versus none,” on the
count of events per subject, or analyzing individual com-
ponents separately. For the collapsed composite and count
methods, component data are summarized into a single
outcome for each subject before groups are compared. This
simplification makes calculations easier, but at the cost of
losing important details on the individual components.

Collapsed Composite
Perhaps the most frequently used composite outcome
approach in perioperative medicine is to compare groups
on the “collapsed composite” of any event versus none
among a set of binary components, using either a "2 test or
logistic regression. This was the primary analysis for the
Smoking study, in which the collapsed composite incidence
was 4.5% and 3.7% for current versus never smokers,
respectively, with an odds ratio (95% confidence interval
[CI]) of 1.40 (1.33, 1.47) (P ! 0.001). Supplemental Digital
Content 2, http://links.lww.com/AA/A259, contains the
SAS code for this analysis and for all methods discussed
below.

A major difficulty with collapsed composites is that
higher-frequency components are overweighted, which is
often problematic because those components tend to be less
clinically important. Treatment effect estimates and test
results are thus driven by a component(s) with the largest
frequencies, overwhelming effects on smaller, and often
more important, components. For example, a test compar-
ing groups on the collapsed composite of higher-frequency
infection and lower-frequency 30-day mortality would be
driven by infections, potentially missing a clinically impor-
tant difference in mortality caused by some unanticipated

(noninfectious) mechanism. The any-versus-none structure
also precludes importance weighting of components.

Largely inconsistent treatment effects are problematic
for any global test, but particularly for the collapsed
composite because differing individual effects can be hid-
den in the any-versus-none structure. For example, in the
POISE I trial,22 the effect of a !-blocker was assessed on a
composite outcome of time to first event of nonfatal stroke,
nonfatal myocardial infarction, or death. The !-blocker
reduced the composite outcome, but individual component
analyses showed a reduction only in nonfatal infarctions,
whereas the other 2 increased. In such cases, the global test
result lacks clean interpretation. Consequently, the investi-
gators appropriately reported the overall composite as well
as individual component results.

Count
The number of positive component events (i.e., “count”)
across the composite is sometimes chosen as the primary
outcome. For example, in the Smoking study, the count would
be the number of the distinct complications in the composite
(Fig. 1) incurred by each patient. Groups are then compared
on the count using a Mann-Whitney test, Poisson regression,
or a proportional odds logistic regression model,23 with the
latter 2 allowing for covariable adjustment.

For the Smoking study, the components are all quite rare,
with mean (SD) number of complications per patient of 0.06
(0.39) and 0.08 (0.45) for current and never smokers, respec-
tively. The proportional odds logistic regression model gives
an odds ratio (95% CI) of 1.40 (1.34, 1.48) (P ! 0.001), meaning
that current smokers are an estimated 1.4 times more likely to
have more complications than never smokers.

Although attractive because it uses more information
than the collapsed composite, the count can be difficult to
interpret when components differ in severity. For example,
a patient experiencing only the most severe outcome in a
composite (e.g., death) may be worse off than a patient
experiencing #2 less-severe events, but would be consid-
ered to have a better outcome. Furthermore, patients expe-
riencing several highly correlated events may not be worse
off than others experiencing fewer unrelated events. As

Figure 1. Smoking study results. Ten of the 13
individual components were significantly worse in
smokers (confidence intervals [CIs] adjusted for
multiple testing). Furthermore, all global test re-
sults show significantly higher odds of having the
complication for current versus never smokers; that
is, the odds ratio CIs all exceeded 1.0. SSI "
surgical site infection; CVA " cerebrovascular acci-
dent; GEE " generalized estimating equation.
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with the collapsed composite, the count is also driven by
higher-frequency components and does not directly facili-
tate clinical importance weighting of components.

Finally, because the count outcome is an ordinal vari-
able, researchers might assume that a test based on it is
generally more powerful than the binary any-versus-none
collapsed composite test. Although often true, counterex-
amples are easy to construct, and determining which
approach is more powerful in a specific situation is best
done through simulations.9

Individual Component Analyses
When a composite primary outcome is chosen, individual
components may be analyzed separately for several reasons.
First, individual analyses are important in interpreting a
global test result, that is, identifying which components are
affected and describing the consistency of the treatment effect
across components. Component analysis is particularly im-
portant if tests for treatment effect heterogeneity are statisti-
cally significant and/or strong heterogeneity across effects is
observed (see “Multivariate Methods” section below).24

Second, investigators sometimes want to make conclu-
sions about each component, regardless of the global test
result or evidence for heterogeneity, as in the crystalloid-
colloid trial discussed below in the “Data Application:
Crystalloids Versus Colloids Trial” section. Alternatively,
investigators may wish to demonstrate significant indi-
vidual effects on some or all components of a composite in
addition to a global effect.

Finally, sometimes no overall test is desired; individual
analysis of components is the primary analysis. Here,
investigators need to specify a priori the rule for claiming
success of the intervention. Do all components need to be
significant? At least one? A certain number? The decision
on how many (or which specific) components are required
needs to be made on clinical grounds. In general, power
decreases as the number of components for which signifi-
cance is required increases.

In each case above, adjustment to the significance crite-
rion for multiple comparisons is needed to protect the
overall type I error, except when all (or arguably, most)
components are required to be significant before success is
claimed.1 Adjustment can be made using the traditional
Bonferroni correction, or less conservatively using, for
example, the Holm-Bonferroni method.25

Treatment effects on individual binary components can
be assessed using Pearson "2 tests, using a correction for
multiple comparisons. Such was the approach taken with
the Smoking data, where 99.6% Bonferroni-corrected CIs
are reported (1–0.05/13 " 0.996) (Fig. 1). For 10 of the 13
components, the odds of having the complication are
significantly higher for current versus never smokers; only
1 of 13 odds ratio estimates is in the opposite direction
(nonsignificant). When most individual effects are in the
same direction, even if nonsignificant, any of the global
tests are more powerful and easier to interpret.

A main limitation of individual component analysis
compared with a global test is reduced power—one of the
reasons composite outcomes are chosen in the first place.
Power can be somewhat increased by using the Pearson "2

test in the context of resampling. Through resampling, we

can simultaneously adjust for the discrete nature of the
data, within-subject correlation and multiple testing. In our
analysis of the crystalloid-colloid data (below in the “Data
Application: Crystalloids Versus Colloids Trial” section),
we used resampling and the Holm-Bonferroni multiple-
comparison procedure to obtain adjusted P values for each
component.26 Basically, adjusted P values for each compo-
nent are computed as the probability (over many thou-
sands of resamples) that data sampled under the null
hypothesis (i.e., no treatment effect) produces P values
smaller than the observed P value for that component.

In the section “Factors Affecting Powers of Tests for a
Binary-Event Composite Endpoint,” we use the above
resampling method to conduct a “minimum P value” test
of the null hypothesis that at least 1 component has a
nonzero treatment effect, and compare its power with other
tests. Using a Bonferroni correction (here, same criterion as
Holm-Bonferroni), the smallest observed P value is signifi-
cant if it is smaller than $/k, where $ is the significance
level and k is the number of components. Of course, study
hypotheses requiring significance on #1 component would
be less powerful than this test.

Multivariate Methods
A binary-event composite endpoint is often best analyzed
using one of several multivariate (i.e., one record per
component per patient) generalized estimating equation
(GEE) methods.27,28 These methods model the individual
component data for each subject directly, instead of first
summarizing results within each subject as do the col-
lapsed composite and count methods. This flexibility en-
ables them to address problems of unequal severity and
frequency, and to assess treatment effect heterogeneity
across components, while adjusting for within-subject
correlation.

We first describe a “common effect” test in which a
single common treatment effect across components is as-
sumed and estimated. We then describe 2 “distinct effects”
tests in which a different treatment effect for each compo-
nent is estimated separately, and then hypotheses on the
effects tested.

Common Effect Test
In the common effect test, a single “common” treatment
effect odds ratio is estimated across the components of a
composite.7,8,29 This test is therefore most meaningful and
powerful when components are similarly affected, al-
though it remains useful in the face of moderate heteroge-
neity. Lefkopoulou and Ryan7 showed that the common
effect test is usually at least as powerful as the collapsed
composite. Pogue et al.24 concluded that this method was
generally more powerful than other multivariate tests that
also assume a common effect across components. Appen-
dix 1 gives details on fitting the model.

For the Smoking study, the individual odds ratios
appear fairly consistent across components, except for
pulmonary embolism and bleeding (Fig. 1), so the common
effect method seems reasonable. The estimated common
effect odds ratio is 1.50 (95% CI: 1.41, 1.59), somewhat
larger than the collapsed composite and count results (both
1.40), assuming an exchangeable or “equal” correlation
between components (estimated correlation " 0.10).
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When components have differing clinical severities,
clinical importance weights (assigned a priori) can be
applied to each component by weighting each observation.
This is a distinct advantage over the unitary approach in
the count and collapsed composite methods. Specific com-
ponent weights are determined by investigators and reflect
the clinical importance of the various component outcomes.
They can be derived from expert judgment, a Delphi
process,30 or from previous work identifying patient per-
ception, health-related quality of life, or cost.31,32 Weights
might also be derived based on previous associations
between, for example, component complications and future
health status (e.g., 1-year mortality).

However, the common effect test is driven by compo-
nents with higher frequency, just as with the collapsed
composite and count. Also, because the model assumes a
common effect across components, it is especially impor-
tant to report individual component results for accurate
interpretation.

Distinct Effects Tests
Instead of assuming a common effect across all compo-
nents, a more flexible option is to use a GEE distinct effects
model in which a distinct treatment effect (and associated
standard error) is estimated for each component.9,10 This
“distinct effects” model may also be more appropriate for
some studies than assuming a common effect. We show
below that with this model one can test whether the
average relative effect equals zero, test whether the treat-
ment effects are consistent across components, and apply
clinical importance weights directly to each component
effect. More details on these and other distinct effects tests
are given in Reference 9, and briefly in Appendix 2.

Average relative effect test. As noted previously, the
collapsed composite, count, and GEE common effect tests
are easily driven by high-frequency components. This is
because they are designed to be sensitive to reductions in
the actual number of events between groups, and as such
are much more sensitive to the absolute differences be-
tween proportions than the relative differences (e.g., rela-
tive risk). For example, in the above-mentioned tests, an
absolute reduction from 0.50 to 0.40 for component A, a
20% relative reduction, would receive much more weight

than a reduction from 0.10 to 0.05 for component B, even
though B has a much larger relative reduction (50%).

The average relative effect test avoids this problem by
simply averaging the component-specific treatment effects
(i.e., log-odds ratios) from the distinct effects model, and
testing whether the average is equal to zero.9,10 Because
each treatment effect receives equal weight in calculating
the average, this test is not driven by higher-frequency
components as are the common effect and other tests. Thus,
the test is especially appropriate when composite compo-
nents have differing incidences and the relative effects are
at least as important as the absolute effects. Also, clinical
importance weights can be applied directly to the treatment
effects, and a priori designated subsets of the components
can also be tested.

For the Smoking study, the average relative effect odds
ratio (95% CI) is 1.32 (1.21, 1.43), considerably smaller than
the common effect odds ratio of 1.50. This is because more
frequent complications (e.g., pneumonia) also tended to
have larger treatment effects, thus weighting the common
effect odds ratio toward them. But the average relative
effect odds ratio, as expected, is not dependent on the
incidences.

Test for heterogeneity of treatment effects. Heterogene-
ity of treatment effects across components can be assessed
by a treatment-by-component interaction test in the distinct
effects GEE model (Appendix 1, code 5.1),9,10 and should
accompany global test results.24 A significant test for heter-
ogeneity is usually convincing evidence of underlying
differences in treatment effect across components, and
would indicate that individual assessment of components
is needed, especially if observed effects are in opposite
directions! However, a nonsignificant result does not assure
that the effects are homogeneous, because a study powered
for a global test may well be underpowered for the
heterogeneity test. Nonetheless, this test can facilitate inter-
pretation of global treatment effect estimates and guide
decisions on whether a common or distinct effect method
(if either) is most appropriate for the global analysis.

For the Smoking study, the test for heterogeneity of
treatment effects is highly significant (P ! 0.001, Table 1),

Table 1. Smoking and Perioperative Complications Study (n ! 82,304/Group)
Global testsa Odds ratio (95% CI) "2 (df) P value

Collapsed composite (any-versus-none) 1.40 (1.33, 1.47)b 174 (1) !0.001
Count of events 1.40 (1.34, 1.48)c 176 (1) !0.001
Common effectd GEE 1.50 (1.41, 1.59)e 178 (1) !0.001
Average relative effectf GEE 1.32 (1.21, 1.43)e 43 (1) !0.001
Treatment-component interactiong GEE — 123 (12) !0.001

Results of all global tests for the smoking and perioperative complications study comparing n " 82,304 current smokers who were propensity matched to
82,304 never smokers.
CI " confidence interval; GEE " generalized estimating equation models to adjust for within-subject correlation among components; unstructured pairwise
correlations ranged from 0.55 to 0.89.
a Tests assessing the relationship between smoking status (current or never smoker) and a composite endpoint consisting of 13 postoperative complication
events (Fig. 1).
b,c,e Odds ratio in current versus never smokers of: b at least 1 complication, c a higher complication count (proportional odds logistic regression), e overall odds
of complications.
d Common effect: estimating a single treatment effect across all 13 components.
f Average relative effect: estimating, then averaging, the 13 distinct treatment effects.
g Test of whether the treatment effect differs across the 13 components.
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consistent with the variation in odds ratios across compo-
nents seen in Figure 1, even though most are in the same
direction. The significant heterogeneity test led us to test
the individual treatment effects in addition to the global
effect. However, when most of the effects are in the same
direction (here, 12 of 13), a significant test for heterogeneity
does not necessarily indicate that results for global tests
such as the average relative effect or common effect are not
meaningful. This is especially true for “quantitative” inter-
actions, i.e., when effects are different but in the same
direction. Table 1 summarizes results for all of the dis-
cussed tests for the Smoking study.

FACTORS AFFECTING POWERS OF TESTS FOR A
BINARY-EVENT COMPOSITE ENDPOINT
Statistical power is an important consideration when de-
signing any trial, but is especially challenging for compos-
ite outcome studies because many factors influence power,
often in nonintuitive ways. Using simulations, we thus
highlight factors that most affect power, including treat-
ment effect, number of components, incidence, correlation,
and consistency of treatment effects.9 We also show which
statistical tests are most powerful in particular situations.

Treatment Effect and Number of Components
Whether adding a new component to a composite will
increase power depends mainly on the treatment effect and
control group incidence of the new component in relation
to existing components, and the correlation between new
and existing components. For any of the discussed meth-
ods, adding a component with too small a frequency or too
small a relative risk reduces power.

Figure 2 from Neaton et al.4 shows the relationship (for
the collapsed composite) between required sample size and
the relative risk of a new component, for 3 scenarios of new
control group incidence. For the original composite (i.e.,
before adding a new component), 1164 patients are needed
to detect a relative risk of 0.5 from a control group
incidence of 0.1 with 90% power at the 0.05 significance
level (horizontal line).

The curved lines represent 3 possible scenarios of con-
trol group incidence for the collapsed composite (0.2, 0.3,
0.4) after adding a new component. Portions of these curves
below the horizontal line indicate combinations of control
group incidence and new component relative risk that
make the new component worth adding to the composite,
because the required sample size to detect the new differ-
ence between treatment and control is reduced.

As seen, if adding a new component increases the
control group incidence to 0.2 (top dotted line), the relative
reduction from control for the new component needs to be
at least 20% (curve crosses horizontal line at relative risk of
0.80) to reduce the sample size needed for detecting the
resulting population difference with 90% power at the 0.05
significance level. However, if the new component had
control and treatment incidences of 0.10 and 0.06, respec-
tively, for a relative risk of 0.6, the new collapsed composite
would require only n " 676. New components resulting in
control group incidences of 0.3 or 0.4 would need relative
risks of approximately 0.83 and 0.87 or stronger, respec-
tively, to be worth adding. Scenarios in Figure 2 assume the
least possible overlap between the original and new com-
ponents (e.g., control incidences of 0.1 for both components
results in 0.2 for new composite). Higher correlation among
components decreases power for each of the global tests
(Fig. 4).

Incidence of the Components
Figure 3 depicts power (vertical axis) as a function of a
common control group incidence (horizontal axis) when
treatment effects are consistent (each of 4 components has
an odds ratio of 0.74), with moderate/high within-subject
correlation (0.50).

In this scenario, power for each test increases consider-
ably as control group incidence increases, and then peaks

Figure 2. Effect on sample size (vertical axis) of adding a new
component to a collapsed composite. Original composite requires
1164 patients to detect a 50% reduction from a control group
incidence of 0.10 with 90% power at the 0.05 significance level.
Plotted is required sample size to detect the resulting difference
after adding a new component versus the relative risk of new
component (horizontal axis), stratified by new control group inci-
dence (3 curved lines) of 0.2, 0.3, or 0.4. Portions of the curves
below the horizontal line indicate components worth adding. Least
possible overlap between components is assumed. (Reprinted with
modifications from Neaton et al.,4 with permission.)

Figure 3. Power as function of baseline incidence, with consistent
treatment effects (odds ratio " 0.74) across 4 outcomes. n "
500/group, 5000 simulations, within-subject correlation " 0.50.
Tests: Avg " average relative effect; Cm " common effect; Ct "
count; MinP " minimum P value; collapsed " collapsed composite.
(Reprinted with modifications from Mascha and Imrey,9 with
permission.)
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and decreases slightly. The average relative effect, common
effect, and count tests all have similar powers regardless of
control group incidence. However, the collapsed composite
has considerably less power than other tests for control
group incidence more than approximately 0.3. The mini-
mum P value test is designed to be more powerful with
heterogeneous effects, so naturally has somewhat lower
power here where the odds ratio is consistent across
components.

Within-Subject Correlation
Lower within-subject correlation increases power for all
tests, regardless of control group incidence. For example, if
Figure 3 were drawn using a correlation of 0.10 instead of
0.50, each of the curves would be shifted upward. Lower
correlation intuitively increases power because as compo-
nent responses are less similar within subject, more infor-
mation is represented by the multiple components. Power
increasing with decreasing correlation is also depicted for
all tests in Figures 4 and 5, with inconsistent treatment
effects and baseline incidences.

Inconsistent Treatment Effects
As seen, when treatment effects and incidences are similar
across components (Fig. 3), the multivariate tests and the
count test have similar power, and are better than the
collapsed composite at higher incidences. But in practice, it

is likely that both treatment effects and incidences will
differ across components, at least to some degree. When
only some components are affected by treatment (and the
remainder have zero effect), power is naturally lower for
any particular global test than when all components are
affected by treatment. Power is especially reduced when 1
or more components move in opposite directions. We
explore here the relative powers of the tests when both
treatment effects and control group incidences differ across
components.

Smaller versus larger component affected. Figure 4
depicts statistical power for a scenario with 4 components
and unequal control group incidences (0.10, 0.10, 0.20, 0.20),
where either a larger incidence (Fig. 4A) or smaller inci-
dence (Fig. 4B) control group component is reduced by
treatment. In Figure 4A, where the only effect is a 50%
reduction in a smaller component (0.10 reduced to 0.05), the
average relative effect test is much more powerful than the
common effect, count, and collapsed composite tests. In
Figure 4B, where the only effect is a 50% reduction in a
larger baseline component (0.20 reduced to 0.10), power of
the average relative effect test is very similar to Figure 4A
because the relative treatment effects (50% reduction) are
the same. However, power for the common, count, and
collapsed composite tests have increased substantially be-
cause the absolute reduction induced by treatment is
doubled compared with Figure 4A (difference of 0.10 vs
0.05), and these tests are sensitive to absolute rather than
relative effects.

Compared with the collapsed composite, count, and
common effect tests, an advantage of the average relative
effect test is that its power remains unchanged whether an
intervention affects components with smaller or larger
baseline incidences. Compared with the other tests, the
minimum P value and interaction tests have higher power
in both figures as is common when effects across compo-
nents are quite disparate (not shown).

Reductions versus increases. A similar conclusion holds
for scenarios with equal baseline incidences, where 2 of the
4 components are affected, and either both are reduced or
increased by the same relative magnitude (say, log-odds
ratios of either $0.35 or %0.35). Power of the average
relative effect test does not change, but the other tests have
considerably less power for the relative reductions than
they do for relative increases (not shown).

Opposite effects in the same composite. Finally, when
all components are affected, and of equal magnitude, but
the effects are split in opposite directions on the log-odds

Figure 5. Opposite effects (on log-odds ratio scale) in same com-
posite. Power appropriately stays at nominal level for average
relative effect test, but increases with within-subject correlation for
the other tests. Two outcomes; n " 1000 per group; 5000 simula-
tions; incidences are 0.20 and 0.11 for treatment and 0.15 and
0.15 for control for the 2 outcomes, giving respective log-odds ratios
of $0.36 and %0.36. Tests: common " common effect; average "
average relative effect; collapsed " collapsed composite. (Reprinted
with modifications from Mascha and Imrey,9 with permission.)

Figure 4. Unequal baselines with some components
affected; power as function of within-subject correla-
tion. Four outcomes, n " 1000 per group, 5000
simulations. Affected components in bold type. A,
Smaller baseline reduced 50% (treatment: 0.05, 0.10,
0.20, 0.20; control: 0.10, 0.10, 0.20, 0.20). B, Larger
baseline reduced 50% (treatment: 0.10, 0.10, 0.10,
0.20; control: 0.10, 0.10, 0.20, 0.20). Tests: com-
mon " common effect; average " average relative
effect; collapsed " collapsed composite. (Reprinted
with modifications from Mascha and Imrey,9 with
permission.)
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ratio scale within a composite, a test that cancels the
opposite effects and tends toward nominal (say 5%)
power is desired. However, we see from Figure 5 that
only the average relative effect test has consistently very
low power, whereas the common effect, collapsed, and
count tests gain power as within-subject correlation
increases. As expected, the minimum P value and inter-
action tests have extremely high power for effects in
opposite directions (#95%, not shown).

The average relative effect test may thus be preferred
when incidences differ and it is not known which compo-
nents will be affected more by treatment, and/or when
direction of effects is not known. But when absolute effects
are a priori deemed more important than relative effects,
and weighting results by components with highest fre-
quency is desired, then the common effect test is preferable.

Data Application: Crystalloids Versus
Colloids Trial
In the trial of Crystalloids Versus Colloids During Surgery
(ClinicalTrials.gov identifier: NCT00517127), researchers at

Medical University of Vienna and their Cleveland Clinic
collaborators are investigating whether intraoperative fluid
management using colloids improves major perioperative
complications compared with crystalloids. The primary
outcome is a composite of binary complications in 6 organ
systems (Table 2). Particular components were chosen
because each is considered clinically serious and likely to
be affected by intervention. Some of them, however, such
as infection, are expected to occur more frequently than
others. But because intervention could well improve some
components while worsening or not affecting others, indi-
vidual components analysis was planned as well. As is
often the case, detecting an overall effect is insufficient; the
investigators also want to know which complications, if
any, are affected.

Because the trial is ongoing, an illustrative dataset was
simulated and then analyzed using each of the discussed
methods; the planned analysis for the ongoing trial is the
common effect GEE method. The underlying scenario had
n " 800 patients per group and baseline event proportions
(crystalloid group) of 0.02, 0.04, 0.06, 0.08, 0.10, and 0.12,
corresponding to components 1 through 6 in Table 2,
respectively. Underlying treatment effects were made to
differ across components, with zero effect on the largest 2
baselines (gastrointestinal and infection) and a consistent
30% relative reduction on the remainder. The underlying
scenario had a common correlation of 0.20 between all pairs
of components, whereas in the GEE analyses, an unstruc-
tured correlation was used (because making no assump-
tions is best, unless not feasible).

Global treatment effect estimates for the collapsed com-
posite, count, and common effect methods are similar (with
odds ratios between 0.82 and 0.85), each nonsignificant, and
as expected, each close to the effects of the 2 components
with largest frequency (gastrointestinal and infection; Table
3). The average relative effect odds ratio of 0.74 is a more
representative summary of the 6 relative effects (i.e., log-odds

Table 2. Major Complications Defining the
Composite Endpoint in the Crystalloid-Colloid Trial
Organ systema Complication definition

1. Cardiac Acute heart failure, myocardial infarction,
ventricular arrhythmia

2. Pulmonary Pulmonary embolism, pulmonary edema,
respiratory failure, pneumonia

3. Renal Dialysis
4. Coagulation Bleeding
5. Gastrointestinal Bowel and surgical anastomosis stricture/

obstruction or anastomotic leak, fistulas,
peritoneal effusions

6. Infectious Deep or organ-space surgical site infection,
sepsis

a Each system was considered as a binary event, such that component
complications 1, 2, 5, and 6 are themselves collapsed composites.

Table 3. Crystalloid-Colloid Trial Simulated Data Example (n ! 800 per Group)
PT/PC

a Odds ratio (95% CI)b "2 (df) P value Adjusted P valuec

Individual analyses
1. Cardiac 0.016/0.029 0.56 (0.28, 1.1)d 2.8 (1) 0.096 0.314
2. Pulmonary 0.038/0.048 0.78 (0.48, 1.3)d 1.0 (1) 0.323 0.679
3. Renal, dialysis 0.044/0.064 0.67 (0.43, 1.05)d 3.1 (1) 0.078 0.314
4. Coagulation 0.060/0.091 0.64 (0.44, 0.93)d 5.5 (1) 0.019 0.097
5. Gastrointestinal 0.090/0.100 0.89 (0.64, 1.2)d 0.45 (1) 0.503 0.746
6. Infection 0.120/0.120 0.98 (0.72, 1.3)d 0.02 (1) 0.878 0.878

Global methods
Collapsed composite (any) 0.24/0.27 0.85 (0.68, 1.07) 1.9 (1) 0.169 —
Count of events 0.37 (0.80)/0.46 (0.95)e 0.84 (0.67, 1.05) 2.3 (1) 0.132 —
Common effectf GEE — 0.82 (0.66, 1.03) 3.0 (1) 0.086 —
Average relative effectg GEE — 0.74 (0.57, 0.96) 5.2 (1) 0.023 —
Treatment-outcome interactionh GEE — — 5.8 (5) 0.322 —

Comparing methods of analyzing a composite endpoint consisting of binary events using simulated data based on the crystalloids versus colloids randomized trial.
CI " confidence interval; GEE " generalized estimating equation model; pairwise correlations ranged from 0.13 to 0.34.
a Proportion with outcome in T (colloid) and C (crystalloid) groups. Random sample from underlying scenario in which components 1–4 had 30% reduction and
components 5 and 6 had zero effect.
b Estimated odds of outcome in colloid versus crystalloid patients.
c "2 test with resampling and stepdown multiple comparison procedure (50,000 resamples).
d Univariate logistic regression.
e Mean (SD) of count of complications across components per subject (proportional odds model).
f Common effect: estimating a single treatment effect across all 13 components.
g Average relative effect: estimating, then averaging, the 13 distinct treatment effects.
h Test of whether the treatment effect differs across the 13 components.
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ratios), and as such is farther from zero and the only signifi-
cant test (P " 0.024). None of the individual effects was
significant using a univariate test and correcting for multiple
testing (Table 3, last column). Thus, only the average relative
effect test detected the 4 underlying 30% treatment effects. As
shown in Figure 4A, when only lower-frequency components
are affected, this test is more powerful than comparator tests,
especially with small baselines.

The treatment-outcome interaction test is nonsignificant
(P " 0.32), even though there is a strong underlying
interaction and large sample size. This supports findings
that the GEE interaction test may often be underpowered,
especially with low-frequency components.9

A practical advantage of the multivariate tests we have
discussed is that clinical importance weights can be directly
applied, either to the estimated treatment effects (average
relative effect method) or the individual data points (com-
mon effect method). For example, suppose investigators
had agreed a priori that coagulation, cardiac, pulmonary,
and renal complications were twice as important as infec-
tion and gastrointestinal complications. Assigning double
weight for the treatment effects on these outcomes, we
obtain a weighted average relative effect odds ratio (95%
CI) of 0.70 (0.53, 0.94) (P " 0.016), somewhat stronger than
the unweighted result because the 4 affected components
were emphasized by the weighting.

DISCUSSION
A key first step in designing a nonrandomized or random-
ized study in which the primary outcome is a binary-event
composite endpoint is to carefully choose the components
of the composite. Components should capture the under-
lying disease or outcome of interest and also be very
plausibly affected by the intervention. The chosen set
should be parsimonious and nonredundant, qualities that
help interpretation of the composite and improve power of
individual component analyses. A corollary is that investi-
gators should exercise considerable caution in adopting an
unmodified composite endpoint from a previous study
unless it truly represents the current outcome of interest.
Finally, although challenging, investigators should strive to
choose components with similar baseline frequency, treat-
ment effects, and clinical severity.5,6,13–16 In practice, how-
ever, strong similarity across all components in each of
these 3 dimensions is rarely possible. Fortunately, newer
statistical methods can help ameliorate shortcomings of
composite endpoints while simultaneously improving
power.8–10 The second key planning step is thus choosing
the appropriate statistical approach.

We discussed 2 multivariate (i.e., multiple outcome per
subject) GEE methods for comparing groups on a binary-
event composite endpoint: the common effect test, which
assumes and estimates a common treatment effect across
components,7,8 and the average relative effect test, which
estimates and then averages effects across components.9,10

Compared with standard methods, collapsed any-versus-
none, count of events, and individual component analyses,
advantages of the multivariate approaches include use of
more information per subject, ability to apply clinical
importance weights, and in most cases greater statistical
power. The average relative effect test has the important

additional advantage of preventing results from being
driven by higher-frequency components. It is thus pre-
ferred when components differ in both frequency and
treatment effect, and the relative treatment effects (e.g.,
odds ratios) are at least as important as absolute effects
(e.g., differences in proportions).

An additional distinct advantage of multivariate over
conventional methods is that clinical importance weights
can be applied. Although some investigators might be
reticent to apply inherently subjective clinical importance
weights, failing to incorporate them assumes equal weights
and is thus often worse.

Relative powers of methods for analyzing a binary-
event composite depend on the frequencies, treatment
effects, and correlations among components.7–9 For most
tests, power decreases as correlation among components
increases, which is worth remembering when choosing
components. As incidence increases, power initially in-
creases for all tests, but then peaks and decreases. Notably,
the frequently used collapsed composite is considerably less
powerful than other methods when incidences are moder-
ate to high (say #0.15) and effects are consistent. For all
global tests, power decreases as treatment effect heteroge-
neity increases.

Although primary analysis of a composite endpoint is
usually a global assessment of the treatment effect across
components, it is vital to assess and report the heterogene-
ity of treatment effects.24 When heterogeneity is detected,
and/or when inference on individual components is de-
sired, as is often the case, individual component analyses
are clearly needed, independent of the global test results.

Design of studies using composite endpoints thus re-
quires careful planning of the components and the analytic
method for best interpretation and power. Newer statistical
methods often help meet the practical challenges of using
composite endpoints in clinical trials.

APPENDIX 1: COMMON EFFECT GENERALIZED ESTIMATING
EQUATION MODEL DETAILS

The Smoking study data are set up (as for each multivariate
method discussed) with 1 row per component per patient,
such as:
and so on, where “Smoker” is 1 for current and 0 for never
smokers, and “Outcome” is 1 if a complication was observed and
0 otherwise, for each of components (i.e., complications) 1 to 13.

The common effect log-odds ratio is estimated in a
multivariate logistic model such as:

log! %k

1#$k
" & $k ' !&, (1)

ID Smoker Component Outcome
1 0 1 1
1 0 2 0
1 0 3 1
1 0 13 1
2 1 1 0
2 1 2 0
2 1 3 1
2 1 13 1
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in which the incidence (%k) for each outcome is modeled as
a function of treatment group X (here, smoker status). A
within-subject correlation structure must be specified; logi-
cal options are an unstructured (distinct correlation for
each pair of components) or exchangeable (same correla-
tion for all pairs) correlation. A single treatment effect (!̂) is
then estimated, along with a separate control group incidence
($̂k) per component. The common effect odds ratio (i.e., odds
of outcome in treated versus control patients) is estimated by
exponentiating !̂, as in logistic regression. The null hypothesis
that the common effect log-odds ratio equals 0, or equiva-
lently, that the odds ratio " 1, is assessed using a 1-df Wald "2

test of !̂/ŜE!̂, where ŜE!̂ is the standard error of the estimated
treatment effect, !̂. Supplemental Digital Content 2
(http://links.lww.com/AA/A259) contains the SAS code to
conduct this test.

APPENDIX 2: DISTINCT EFFECT GENERALIZED ESTIMATING
EQUATION MODEL DETAILS
For the distinct effects model, a multivariate generalized
estimating equation (GEE) model can be used to estimate a
distinct treatment effect, !k, and standard error for each
component, as in the equation

log! %k

1 ( %k
" & $k ' !k&, (2)

where the only difference from model (1) is the component-
specific log-odds ratio, !k, instead of the common effect, !.
As shown in more detail in Mascha and Imrey (2010)9 and
Bull (1998),10 a generalized Wald test can be used to
conduct several distinct effects tests (beyond what is dis-
cussed here), simply by changing the contrast matrix or
vector L! in the following test statistic

W & 'L'%̂)'(L'&̂%L)-1(L'%̂) # "p
2, (3)

where %̂ is the vector of estimated treatment effects from
the GEE model, (̂! is the robust variance-covariance matrix
of %̂, L! is a p ) K contrast matrix or vector and p is the
number of rows in the contrast L!. We thus test the null
hypothesis

H0: L!% & 0 versus the alternative
H1: L!% * 0.

The tests below are based on Equation (3) and are
distinguished by the particular form of the contrast L!
that is used. Supplemental Digital Content 2
(http://links.lww.com/AA/A259) contains the practical
SAS code to conduct the tests below.

Average Relative Effect Test
The average effect GEE test is constructed using Equation
(3) and inserting the K-length vector (1/K 1/K 1/K …) as the
contrast L!, so that L!% " 1/K&k!1

K %k, the average log-odds
ratio across components. We thus test the null hypothesis that
the average log-odds ratio " 0 with a 1-df "2 test.

Treatment-Outcome Interaction “Heterogeneity” Test
Homogeneity of the treatment effects across components
can be assessed using a K-1 df treatment-component inter-
action test based on Equation (3) and using a K-1 by K
matrix of contrasts for L, where L!% based on K " 4
components would be as follows:

L!% & $ 1 ( 1 0 0
1 0 ( 1 0
1 0 0 ( 1

%$
!1

!2

!3

!4

% & $ !1 ( !2

!1 ( !3

!1 ( !4
% .

(4)
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